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A finite or infinite sequence of real numbers is said to be 
stable if it admits minimal realization by a stable linear system. 
It is shown that the preservation of stability as such a sequence 

is truncated or extended is not a generic property even among 

stable sequences. This is of interest for identification of linear 
systems from partial data and for partial realization of random 

systems, in which cases it constitutes a negative result. Certain 
finite sequences have infinitely many minimal realizations each 
having different stability properties. In this case, a graphical 

criterion in the spirit of the Nyquist criterion is derived to 
exploit this lack of uniqueness in order to determine whether 

one can achieve a stable pole placement by a judicious choice 
of partial realization. 
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1. Introduction 

Given a finite sequence 

y:= (Y,,Yp..,Y/v) 

of real numbers, consider triplets of matrices Z: = 
(A, B,C) with the property that 

CA’-‘B=y,, i= 1,2 ,..., N. (1) 
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This requires that A EIW”~“, B ~[w”~’ and CE 
tT41xn for some arbitrary nonnegative integer n. 
Such a triplet is called a realization of y, and the 
number n is its dimension. Representations of this 
type play a central role in systems theory [6- 
9,13,15,16,19,20]. It is easy to see that any finite 
sequence y has a realization. Let S(y) be the 
unique integer with the property that y has a 
realization of dimension S(y), but none of smaller 
dimension; S(y) is the McMillan degree of y. A 
realization of dimension 6(y) is said to be minimal. 
A partial realization of a (finite or infinite) se- 
quence y is a realization of some subsequence of y 

of type (Y,~Y~,...~Y~). 
To each realization (A, B,C) of 

Y = (Y,?Y2,...TYN) 

we associate the rational function 

w(z)= C(zI-A)-‘B (2) 

called the transfer function. In view of (1) the N 
first coefficients of its Laurent series about z = cc, 

W(z) = fg c/l-‘Bz-‘, (3) 
r=l 

are precisely the components of the sequence y. If 
W has all its poles in the open left half plane Q= -, 
the realization (A,B,C) is said to be stable; if they 
are all in the open right half plane Q= + , (A, B,C) is 
completely unstable. (All results of this paper re- 
main valid with Q= - and Q: + replaced in this 
definition by the open regions inside and outside 
the unit circle respectively.) The sequence y will be 
called stable if it has a stable minimal realization. 
Note that, as we shall see below, a stable sequence 
may well have an unstable minimal realization 
also. 

We shall represent the sequence y as a point in 
the space Iw N equipped with the usual (Euclidean) 
topology. The following theorem is our main re- 
sult. 
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Theorem 1. Let N 2 3, and let M be the largest even 
number smaller ,than N. Then there is a nonempty 
open set U C R N of stable sequences ( y,, yZ, . . . , yn) 
with the property that all minimal realizations of the 
partial sequence ( y, , yz, . . . , yIM ) are completely un- 
stable. 

This statement, which was motivated by a ques- 
tion raised by Kalman in [8], has the following 
interpretations and consequences. We denote by 
QN c!IuN the open set of stable sequences 

(Y ,I-..,Y,V)- 

Corollary 1. Let N 2 3. Then there exists no open 
dense subset in D, of stable sequences ( y, , yz, . . . , yN ) 
with the property that all partial sequences 

are stable. 

Consequently the preservation of stability of 
partial realizations is not a generic property among 
stable sequences, as one may have hoped [8; bot- 
tom of p. 231. (See Definition 2 and the preceding 
paragraphs in Section 2 for the definition of 
‘generic’.) 

Corollary 2. Let M be any natural number, and let 
N be the smallest even number greater than M + 1. 
Then there is a nonempty open set UC !R N of 
sequences y: = ( y,, y2,. . . , yN) such that the partial 
sequence (Y,,Y~,..., yIM) is stable but all minimal 
realizations of y are completely unstable. 

This has consequences for the identification 
problem. In fact, it follows from Corollary 2 that 
we cannot infer stability of a system from the 
stability of its partial realizations, even in the 
generic case, answering in the negative a question 
also raised in [8] by Kalman (p. 25). 

Finally, let us consider the algorithms for par- 
tial realization of random systems proposed in 
[13,14] and in [5]. The property of the covariance 
sequence needed for these procedures to work is 
not generically satisfied among stable sequences, 
since it requires that a partial sequence of a stable 
sequence is stable. 

2. Preliminaries 

To each sequence y:=(y,,yl,..., yN) of real 
numbers we associate the family H( y ) of all Hankel 
.matrices 

YI Y2 ..’ Yj 

Y2 Y3 ‘.. Yj+ I 
W,= . (4) 

Y, Yi-tl ‘.’ Yi+j- I 

such that i +j - 1 =G N. The connection between 
the ranks of such matrices and the McMillan 
degrees of the corresponding partial sequences is 
well known and thoroughly studied in the liter- 
ature [6,7,16,19]. The particular formulation given 
by the following theorem appears in [5], but at 
least part (i) is easily obtained from Theorem 11 in 

[161. 

Theorem 2. Given a sequence 

Y:= (Y,,y2~.9 YN) 

of real numbers, let 

v:= {~(O),y(l),..., v(n)} 

be a sequence of integers defined in the following 
way. Set v(0): = 0, and, for k = 0,1,2 ,... until the 
process stops, define v(k + 1) to be the smallest 
i=v(k)+ 1, v(k)+2 ,..., N-v(k), if any, such 

that Hv(k)+ 1.j has full rank. Then 
(i) For M= 1,2,..., N, the partial sequence 

{Y,9Y2,...* yM} has McMillan degree v(k) if and 
only if 

v(k- l)+v(k)<M<v(k)+v(k+ 1) (5) 

wherev(-l):=Oandv(n+l):=N+l. 
(ii) A square Hankel matrix Hii E H(y) is non- 

singular if and only if i E v. 

Therefore it is reasonable to call 

{v(O>,v(l),...~ v(n)} 

the degree indices of y. A family 

of partial realizations of y with the property that, 
for k=O 1 , ,-..t n, Z, is a minimal realization of 

(Y,,Y2r.-., yM} for each M satisfying (5) is called a 
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complete family of minimal partial realizations of y This interpretation of Magnus’ results [l2] 
[5]. Clearly, Z, has dimension y(k), and Z, = (which were not developed in the context of reali- 

(0,0,0). zation theory) can be found in [5]; also see [lo]. 
Now let r,,(z) be an arbitrary formal power 

series of type 

T,(z) = $ y,z-’ (6) 
1=l 

and consider the following algorithm proposed by 
Magnus [ 121. For k = 1,2,3 ,... while l-‘, _, # 0, in- 
vert rk-,, normalize by multiplying with a real 
number Pk-, E 0, and split 

h/u4 =d4 - r,(z) (7) 

into a polynomial (principal) part 

(Yk(Z) = zdtk)- ak,zd(k)-’ - . . . -ak.d(k) (8) 

AS in [5] we define the parameter sequence 

PI= (P,TPZ7...3 PN) 

of y in the following way. For k = 0,1,2,. .., set 

PZY(b I)+1 

1 

0 ifOGii(d(k), 

= fik-, #O ifi=d(k), (10) 

%.,--d(k) ifd(k)<i<2d(k), 

until all components of p have been determined. 
The following result is proved in [5]. 

and a formal power series r, of type (6). In each 
step, /Ik-, is chosen so that LYE is manic. This 
process terminates in a finite number of steps if 
and only if r, converges to a rational function 
P/Q in the neighborhood of z = co, in which case 
it is equivalent to the Euclidean algorithm applied 
to the pair (P, Q) of relatively prime polynomials. 

Theorem 4. [5]. Let 

@N:RN4N 

be the function sending each sequence 

Y:= (Y,~YZV..~ YN) 

Theorem 3 (Magnus). Let 

y:= (Y,*Y2,..., YN) 

be a sequence with degree indices 

{v(O),v(l),...,v(n)} 

and let 

to its parameter sequence p. Then @‘N is a bijection, 
and, for M < N, 7 E R M is a partial sequence of y if 
and only if @: = (PM(T) is a partial sequence of 
p: = QN(y). Moreover, if y has degree indices 
{v(O), v(l), . . . , v(n)}, the transfer functions 

(W,, w,,..., W,- , ) are uniquely determined by y, 
whereas W, is unique if and only if N 2 2v(n). Zf 
N c 24 n), the last 24 n) - N a-parameters needed 
for determining W, are arbitrary. 

be a complete family of minimal partial realizations 
of y. Let r,, be the transfer function of 2,. Then the 
algorithm (7) terminates in n steps, and v( k + 1) = 
V(k)+d(k)for k=0,1,2 ,..., n- 1; Y(O)=O. Also, 
for each k = 0,1,2,. .., n, the transfer function of Z, 
is W, = Pk/Qk where Pk and Qk are relatively 
prime polynomials generated by the three-term re- 
cursions 

A property of points in the Euclidean space RN 
is said to be generic if all x E RN have this prop- 
erty except perhaps for those x which are con- 
tained in some proper algebraic subset 

x= {xlf;(x) =o; 

4+,(z)=%+, (4Pkb) -PPk-l(z); 

P-,= -1, P,=O; (94 

Qk+dz)=ak+, (dQ&) - PkQk--I(z); 
Q-, =O, Q,= 1. (9b) 

Moreover, for k = 1,2 ,..., n - 1, Pk and Pk+, are 
relatively prime as are Qk and Qk + ,. 

f;polynomial; i= 1,2,...,p} (11) 

of RN. Note that the set of points which enjoy a 
generic property contains an open dense subset of 
R N. In fact, a proper algebraic subset X is a closed 
subset with no interior. To see this, observe that, if 
X had an interior point x,,, it would contain an 
r-ball centered about xc,. Then, for each defining 
equation f;(x) = 0, expand f; in a Taylor series 
about x0 to see that this would require the deriva- 
tives off; of all orders to vanish at x = x0. Conse- 
quently all polynomials fi must be identically zero, 
and hence X = RN, contradicting the assumption 
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that X be a proper subset of RN. 
Let us consider two examples of generic proper- 

ties. 

Example 1. Let (P,,P~,...,P~~)EIW~” have the 

property that p2,+ I #O for i=O,l,..., n- 1. This 
is a generic property since the exceptional set is 

x= 
i 

n-l 

PIi&Pz,+I =o 
i 

. 

For later reference, define V: = 0%“’ - X to be the 
set of points having this generic property. 

Example 2. The property of (y,, y2,. . . , y2,,) E Iw 2” 
that all square Hankel matrices H,, E H(y) are 
nonsingular is a generic property, as was pointed 
out by Brockett [l]. In fact, the exceptional set is 

X= {yldet H,;=O;i= I,2 ,..., n}. 

Let W denote the set of points in R 2n enjoying this 
generic property. 

More generally: 

Definition 1. Suppose S C [w N is a subset. We shall 
say that a property of points x E S is generic if all 
x E S have this property except perhaps for those 
x which are contained in the proper intersection 
X n S C S of S with an algebraic subset XC [w N. 

Thus, if S c tR2 is the open left-half plane then 
the property of points (x,~) ES that y # 0 is a 
generic property. 

By Theorem 2, each y E W has degree indices 

{0,1,2,..., n}, and therefore it has a parameter 
sequence p E V. In fact, a fortiori, there is a one- 
one correspondence between V and W (Theorem 
4). Now the manic polynomials (Y,,Q~, . . ., (Y, are 
linear, and Pk and Qk have degrees k-l and k 
respectively, and therefore (9) reads 

4+,(z) = (z- PZk+ZMZ) 

-P2,4+JdZh 

P-,= -1, Po=O; 

Q,+,(z)=(z-P~~+~)(~~(z) 

-~2k+,Qd4; 

Q-,=0, Q,= 1. 

Since N: = 2n = 2v( n), the transfer function W, of 

y is uniquely determined by y, whereas the partial 
sequence ( y,, y, . . . , yzn-,) has a one-parameter 
family of transfer functions, pZn being the arbi- 
trary parameter (Theorem’4). 

The recursions (12) have a longer history than 
their generalization (9). going back all the way to 
Chebyshev [2] and Stieltjes [ 17,181. They provide a 
well-known method for tridiagonalization of 
matrices and computation of eigenvalues, intro- 
duced by Lanczos [ 111. Therefore {Q,, Q,, . . , Q,) 
and (PO, P,, . . , P,} are usually referred to as the 
Lanczos polynomials of the first and second kind 
respectively [4]. 

3. Proof of Theorem 1 

Lemma 1. The function +: W -* V obtained by re- 

stricting the domain and the range of the function 
QZn (defined in Theorem 4) is a homeomorphism. 

Proof. By definition, y E W holds if and only 
if det H,; #O for i= 1,2 ,..., n. But this happens if 
and only if y has degree indices {0,1,2,...,n} 
(Theorem 2) which is equivalent to p E V. Hence 
@z,(W) = V. Now Q2, is a bijection (Theorem 4) 
thus so is 9. Let +, : V- 88 2n be the function, 
defined via (12), sending p to the coefficients of P, 
and Q,, and let $2: G,(V) + R2” be the function 
assigning to the coefficients of P, and Q, the 
coefficients of the powers z-‘, zP2,...,zeZn in the 
Laurent series about z = co of W,: = PJQ,; note 
that P,, and Q, are relatively prime (Theorem 3). 
Both 9, and +2 are polynomials and hence con- 
tinuous. But 

Y=+-‘(P)=(+, o cp,) (P) 

for all p E V, and therefore +-’ : V+ W is a con- 
tinuous bijection. Since V is locally compact and 
W is Hausdorff +-‘, and hence 9, is a homeomor- 
phism. Cl 

Let R, and R, be arbitrary real manic poly- 
nomials of degrees n and n - 1 respectively and let 
X be an arbitrary real number. Then the triplet 
(R,, R,,X) contains 2n arbitrary real parameters 
and can therefore be represented as a point x E 
lR2”. The polynomials R, and R, are relatively 
prime if and only if the Euclidean algorithm ap- 
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plied to the pair (R,, R, ), i.e. 

R,(z) = dz)R,(z) + R,(z), 
degR,cdegR,, 

R,(z) = dz)R,(z) + Rkz>~ 
degR,CdegR,, 

(13) . . . 

R,,-,(z) = rm- ,(z)R,,,- l(z) + R,,,(z), 
deg R,,<deg R,n-,, 

R,,-,(z) = ~n(z)R,,(z)~ 

produces a final polynomial R,, of degree zero. 
Here m G n. The algorithm (13) terminates in n 
steps (m = n) if and only if all polynomials v,, 
TV,. ..,p,, are of degree one. In this case R, and R, 
are always relatively prime. 

Lemma 2. Satisfying the two conditions 
(i) Euclidean algorithm (13) terminates in n steps 

(m=n>, 
(ii) X # 0, 

is a generic property of the point x E 54 ‘” corre- 
sponding to the triplet ( R O, R , , X ). 

Proof. Identifying coefficients of powers of z in 
the first equation of (13) it is easy to see that n, is 
manic and linear and that the coefficients of R,(z) 
are polynomials in x. Let 8,(x) be the coefficient 
of znp2 in R,(z). The set 

x,:= {xIB,(x) =o} 

belongs to the exceptional set X of points in 
x E Iw’” for which the property does not hold. If 
x @ X,, continue to the second equation of (13) 
where then V~ is linear. It is no restriction to 
replace R,(z) by fI,(x)R,(z) there, making rr2 
manic; this is just a normalization since 8,(z) is a 
nonzero constant. Let B,(x) be the coefficient of 
zRp3 in R3(z). As before B, is a polynomial, and 

Moreover, 0, is a factor in e2, so X, C X2. Proceed- 
ing in this fashion leads in n - 1 steps to a re- 
mainder R,(z) of degree zero. In fact, R,,(z) = 

en- ,(x), where 8,-, is a polynomial having 

e,,e2,..., en- 2 as factors. Consequently 

xn-,I= {xlen-,(x)=o} 

consists precisely of those x E tR2” which corre- 

spond to polynomials R, and R, for which the 
Euclidean algorithm (13) terminates with m c n. 
Then the exceptional set is 

x= {xIx2,1e,,-,(x) = o>, 

where x1,, =X. This is clearly a set of type (11). 
0 

Lemma 3. Let Z C [w ” be the set of points enjoying 
the generic property of Lemma 2, and let #: V -+ Z 
be the function such that $( p) is the Iw 2n representa- 

tion of (Q,, Q,,- , , p,) where Q,, and Q,,- , are given 
by (12b). Then 1c, is a homeomorphism, and Z is 
open and dense in Iw 2i’. 

Proof. In the generic case (m = n) the equations of 
(13) may be identified with (12b) if we take k = 
n- l,n-2,..., 1. In fact, modulo a trivial normal- 
ization, R,, R,,. . . ,R,, correspond to Q,,, 
Q,- ,,..., Q, respectively. Hence $ is a bijection, 
the Euclidean algorithm (13) being the inverse 
#-I. Consequently, since 4 is ccntinuous, it is a 
homeomorphism (Brouwer’s theorem on invari- 
ance of domain). Since the exceptional set X in the 
proof of Lemma 2 is closed and has no interior 
(see remark in Section 2) Z is open and dense. 
0 

Note that, in Lemmas 1 and 3, it is necessary to 
restrict the functions to the generic sets in order to 
insure that they are homeomorphisms. In fact, 
allowing the parameters to vary so that the cy-poly- 
nomials in (9) change degrees will destroy continu- 
ity. 

We now turn to the proof of Theorem 1. First, 
for n 2 2, take N = 2n. Consider all triplets 
(Q,,, Q,- ,, p,) such that Q,, is a stable (all zeros in 
Q= - ) manic polynomial of degree n, Q,,- , is a 
completely unstable (all zeros in C’) manic poly- 
nomial of degree )I - 1, and p, is a nonzero real 
number. Let Y be the corresponding subset of 
Iw”‘. It follows from the Routh-Hurwitz theory [3] 
that Y is a nonempty open set. Therefore, since Z 
is open and dense (Lemma 3) Y fl Z is open and 
nonempty, and consequently so is 

u:=(qc 0 +>-‘(rnz) 

(Lemmas 1 and 3). Clearly U C W. Therefore each 
y E U has degree indices {0,1,2 ,..., n) and a 
parameter sequence p E V. By Theorem 4, the 
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transfer functions W,-, and W, are unique. They 
are 

W “-, =P,-,A?,,-, and K=P,,/Q, 
where P,- , and P, are determined by (12a). Since 
W, is stable, y is stable, whereas W,-, is com- 
pletely unstable. This establishes the theorem for 
even N, since all minimal realizations of 

(Y,9Y2*...9 yZnPZ) have the transfer function W,- ,. 
Next, for n 2 2, take N = 2n - 1. Then merely 
imbed y in the extended sequence (y, yz,) and 
proceed as above. Since (y, yz,) is stable, so is y. 
0 

The proof of Corollary 2 is analogous. 

4. A graphical criterion for stability of certain 
partial realizations 

Consider a generic sequence 

(YbY2 ,..., yzn-,) E R2n-‘, 

i.e. a sequence with the property that det H,, # 0 
for i = 1,2,... ,n. Such a sequence has McMillan 
degree n and, as explained in the end of Section 2 
above, it has a one-parameter family of transfer 
functions W,( z; pz,). 

We ask, then, whether one can choose a value 
of the parameter pZn so that the corresponding 
realization is stable. This is in contrast to the study 
of generic sequences of even length, for which 
there exists a unique minimal realization which 
may or may not be stable as we have noted above. 
Explicitly, in this case we can construct a single 
contour in the complex plane from the data 

(Y ,, . . .,yz,- ,) such that the winding number of 
this contour about the free parameter l/p,, de- 
termines the stability and the instability of the 
minimal realization corresponding to pzn. Our 
‘Nyquist Criterion’ arises from consideration of 
the Lanczos polynomials Q,- , , Q,-, which are 
computed from y = (y,, . . ,yZn- ,) using 
Chebyshev’s recursion formulae ( 12b). From Q, _ , , 

we can then construct the denominator 

2r: P > , 2n in a coprime factorization of the trans- 
fer function W,(z; pZn), again using (12b) with 
k=n- 1: 

Q,(z) = (z- p,,)Q,-,(4 - ~+,Qn-dz). 
(12b)’ 
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In (12b), pzn- , , Q,- , and Q,,-, are fixed and Q, 
depends (as a manic polynomial of degree n) only 
on pZII. Consider the curve, C(y), which is defined 
as the image of the imaginary axis under the real 
rational function 

f(z) = Q,,-,(z),‘[zQ,-,(z>- PL-,Qn-Z(Z)]. 

Note that f is strictly proper of degree n, since 
pz,,- , # 0 and Q,- , and pm-Z are relatively prime 
(Theorem 3). 

Theorem 5. Suppose f( z) has no pole on the imagin- 
ary axis and that l/p,, does not lie on the contour 
C(y). If 5 denotes the winding number, computed in 
the counterclockwise orientation of C(y) about 

1 /p2,,, and Y denotes the number of zeroes of Q,- , 
in the left-half plane, then Q,(z; p2,> has 5 + v  
zeroes in the left-half plane. In particular, the 
minimal partial realization of y  = ( y,, . . . , Yzn-, ) 
corresponding to the parameter pZn is stable if; and 

only il; 

5 = n - # {left-halfplane zeroes of Q,- , } . 

Proof. The open loop transfer function f(z), under 
scalar gain output feedback k, transforms into the 
closed loop function: 

Qn-,b) 
fk(z)= (z+k>Q,-,(z)-p,,-,Q,-2(z)’ 

Setting k = -pZnr the classical Nyquist criterion 
asserts that S + Y is the number of zeroes of 

(z-~2n)Q,-,W - ~2n-,Qn-2(z). 

Comparing with (12b) yields the conclusion. II! 

References 

[ 11 R.W. Brockett, The geometry of partial realization prob- 

lems, in: Proc. 1978 IEEE Con/: on Decision and Control, 
pp. 1048- 1052. 

[2] P.L. Chebyshev. Sur I’interpolation par la methode de 

moindres car&, M6moires de I’Acad&mie ImpPriale des 
Sciences de SI. PPtersbourg I (1859) I-24. 

[3] F.R. Gantmacher, The Theory of Matrices (Chelsea, New 
York, 1959). 

141 W.B Gragg, Matrix interpretations and applications of the 
continued fraction algorithm, Rocky Mountain J. Math. 4 

(1974) 213-225. 
[5] W.B. Gragg and A. Lindquist, On the partial realization 

problem, to appear. 



Volume 2, Number 2 SYSTEMS & CONTROL LETTERS August 1982 

[6] B.L. Ho and R.E. Kalman. Effective construction of linear 
state-variable models from input/output functions, Re- 

gelungsrechnik 14 (1966) 545-548. 
[7] R.E. Kalman. On minimal partial realizations of a linear 

input/output map, in: R.E. Kalman and N. De Claris, 

Eds., Aspects of Network and Sysrem Theory (Holt, Rine- 
hart and Winston, New York, 1971) pp. 385-408. 

[8] R.E. Kalman, On partial realizations, transfer functions 

and canonical forms, Acre Polytechnica Scondinouicu, 
Helsinki, MA31 (1979) 9-32. 

[9] R.E. Kalman, P. Falb and M. Arbib, Topics in Marhemoti- 

cal Sysrem Theory (McGraw-Hill, New York, 1969). 
[IO] S.-Y. Kung, Multivariable and multidimensional systems: 

Analysis and design, Ph.D. thesis, Dept. of Electrical 
Engineering, Stanford University (June 1977). 

[II] C. Lanczos. An interation method for the solution of the 

eigenvalue problem of linear differential and integral oper- 
ators, J. Res. N~I. Bur. Srandardr 45 (1950) 255-282. 

[12] A. Magnus, Certain continued fractions associated with 
the PadC table, Marh. 2. 78 (1962) 361-374. 

[13] J. Rissanen, Recursive identification of linear systems, 

SIAM J. Control 9 (1971) 420-430. 
(14) J. Rissanen and T. Kailath, Partial realization of random 

systems, Automatica 8 (1972) 389-396. 

[ 151 L. Silverman, Representation and realization of time-vari- 
able linear systems, Tech. Rep. 94, Dept. of Electrical 
Engrg. Columbia Univ., New York (1966). 

[16] L. Silverman, Realization of linear dynamical systems, 
IEEE Trans. Auromorie Control 16 (1971) 554-567. 

[I71 T.J. Stieltjes, Quelques recherches sur la theotie des 

quadratures dims mechaniques, Ann. Sri. EC. Norm. Paris 
1 (1884) 406-426. 

[18] T.J. Stieltjes, Sur la reduction en fraction continue d’une 

serie precedent suivant les pouissances descendants d’une 
variable, Ann. Fat. Sci. Toulouse 3 (1889) 1- 17. 

[l9] D.C. Youla, The synthesis of linear dynamic systems from 

prescribed weighting patterns, SIAM J. Appl. Math. 14 
(1966) 527-549. 

(201 D.C. Youla and P. Tissi. n-Port synthesis via reactive 

extraction, part I, IEEE Inrernotionol Convection Record, 
Part 7, Volume 14 (1966). 

105 


