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Abstract

This Document is a Master Thesis report as part of the cycle of the ENSIMAG
and KTH engineer. The internship linked to this report took place at Nexialog
Consulting, Paris.
This document deals with the inference and filtration by a counting process of
a hidden parameter. The theory developed here is applied to Credit risk and
specially to Migration Matrices of Rating.
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1 Introduction

1 Introduction

Analyzing the effect of business cycle on rating transition probabilities has been a subject of
great interest these last fteen years, particularly due to the increasing pressure coming from
regulators for stress testing.
This report presents a new method of estimation, the filtration of an hidden parameter by a
counting process applied in credit Risk to ratings migrations.
The study is the continuity of the work of Areski Cousin and Ragnar Norberg on factor-based
migration models.

An underlying goal of this thesis is to gain a deeper insight as to what the job of an engineer
or researcher consists of. The candidate is expected to work within a company to become
more accustomed to the world of business and its organization, structure. This internship
aims to challenge technical and human skills alike in a real world scenario.

Besides the personal development, to concretely accomplished a useful project for the host
company represents a real motivation of any master thesis. To do it at Nexialog consulting,
located in Paris represented the perfect opportunity. This consulting firm specialised in Fi-
nancial Risk and insurance provides services and advises to the biggest banks and insurance
companies in Paris. Nexialog is a specialist in banking and financial risk. It has also develop-
ing a strong development and research pole, within which this internship has been conducted.
The principal interest consisted in finding an applied project in finance, which would develop
my skills in Statistics and in learning more about my future carrier plan.

The first part of this document aims to describe the working conditions. This part will be
exempt from technical details.

The second part will be focused on the technical elements of the project: the objectives of
the project and the model that has been developed to reach them. This part will close on an
objective analysis of the results.

The final part of the report will detail the satisfaction and regrets (that could be gathered
after completing this internship).
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2 Description of the environment

2 Description of the environment

2.1 The company: Nexialog Consulting

Founded in 2006, Nexialog is an advice firm specialised in bank and insurance which intervenes
within the business teams to support them in making strategic decisions and in implementing
their projects.
It noteworthy that the firm has had a sharp and stable growth since its creation 12 years ago.
The increasing from 11 employees in 2009 up to 68 in 2017 of its manpower, is a sign that
attests to its presence and dynamism in the world of baking and insurance.

Figure 2.1 Nexialog’s evolution

Its areas of activity are articulated around 6 complementary business units (BU):

-Insurance Risk Management
-Bank Risk Management
-Finance Risk Management
-Financial Direction
-Operational Strategy
-Research and development
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2 Description of the environment

(a) Nexialog’s structure
(b) Business units

Risk Insurance Management

The Actuarial Consulting (the Risk Management and Actuarial Business Unit (RMA)), is
in charge of the insurance activities. Regulatory reforms and financial communications re-
quirements have helped in promoting the importance of good risk management in insurance
companies.
The main topics covered are actuarial production, data science, asset management, as well as
prospective and financial modelling and product actuarial services.
The actuarial consultant is usually required to guarantee the insurance company’s coverage
while being worried about the competitiveness of the organisation and the offer.

Bank Risk Management

The banking risk management unit provides banking institutions with support for the con-
duct of their projects by accompanying them both in their capital allocations and in their
operational risk management system.
In fact, by anticipating changes of the economic and regulatory environment, this unit pro-
vides its clients with expertise in statistical analysis and portfolio management to cover them
from the risks associated with their activities.
The areas of expertise can be summarized in risk modelling, prudential reporting and moni-
toring, regulatory projects and data management.

Financial Risk Management

Present in both banks and insurances, the Business Unit Risk Management and Finance
(RMF) is involved in capital market, ALM, asset management and financing topics.
Regulatory reforms (IFRS9, active QRTs S2, EMIR, FRTB, PRIIPS...), modeling and cal-
ibration of risk models, complexifications of insurance products and the implementation of
innovative reporting represent the daily challenges of the RMF unit’s clients.

Financial Direction
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2 Description of the environment

This structure works in close collaboration with the financial departments of various banks
and insurances on daily tasks or on the implementation of their major transformation projects.
It participates in the regulatory compliance, financial management or operational assistance
in the management of various accounts.

Operational Strategy

The Operational Strategy structure assists its clients in the management of their own projects.

Research And Development

In order to anticipate the future needs of clients and to propose innovative solutions, the
research and development unit acquires knowledge from previous experiences and its own
theoretical work. It then diffuses that knowledge throughout the company and to its collab-
orators and clients.

2.2 Working environment

The working conditions have a vital role in the productivity and well-being of employees.
The term working environment encapsulates the physical location but also the way of working,
the organization, the mentalities, the corporate policies, and the human relationship within
it...
It is therefore interesting to investigate on the impact of this environment on the productivity
and the internship’s management.

2.2.1 The physical environment

Nexialog Consulting’s headquarters are located in the center of Paris. A centralized and well-
connected access reduces the time of transport of the collaborators, an important detail in a
big city (the delays of the public transports, the traffic jams involve a waste of time and may
affect the morale of the collaborators ...).
There are two open spaces, one for the commercials and for the structure and an another
for the consultants. Open space work saves space but also encourages exchange and cohesion
among employees. Small private spaces are available to isolate yourself in order to make small
meetings or phone calls.

2.2.2 Organization and policies

A crucial policy at Nexialog is to establish a fairly horizontal hierarchical organization. This
kind of choice aims to improve the well-being team spirit among all employees, but also to
help them to feel more involved in business projects.

Transparency is also be a priority to ensure a good understanding between the commer-
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2 Description of the environment

cial unit and the consultants. Trust then plays the role of the corner stone in an environment
where everyone must be free to work toward a common interest.

Many events, such as seminars abroad, are essential to create a corporate cohesion within
a system where employees are not used to work together.

The communication inside the company is a crucial worry. Every Monday morning, a meeting
between the collaborators present at the firm, the commercial structure and the associated
founder leads to regular exchanges about new events and opportunities. These meetings,
make people aware and concerned about the common project of the company.
Each week, employees have an individual and informal meeting with the HR department to
talk about life in the firm.
The many efforts made to ensure the well-being of everyone, testify to the important consid-
eration of the impact of the environment.

2.2.3 Social and environmental impact

Personal computer use of 65W for 35 hours per week over 26 weeks of internship is approxi-
mately 216000000J or 60KWh.

Nexialog has implemented various measures to be the most socially and ecologically respon-
sible as possible. Efforts are made in particular on energy consumption (energy saving bulbs,
window insulation...), on the use of electronic resources, on paper savings, and on the sorting
of waste.

Figure 2.3 EcoVadis score sheet for RSE score from the 10th january 2019
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2 Description of the environment

2.3 The planning

The working environment must then influence a provisional schedule for the good manage-
ment of the internship. The planned schedule was summarized in 4 parts:

-A one-month phase of internal documentation to be immersed in the topic and to improve
the skills on the subject.
-A one-month phase of external documentation to gather knowledge on the state of the art.
-A two-month phase of personal research.
-A two-month phase devoted to the implementation and writing.

This schedule was punctuated by the regular visits of the supervisor Dr.Areski Cousin. Our
exchanges reorganized the direction of the project.
I met the research and development manager monthly to ensure a regular follow-up during
this internship.
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3 The model developed

3 The model developed

A credit rating evaluates the confidence in the capacity of the borrower to comply with the
credit’s terms. Predicting the evolution of rating migration matrices has been a crucial con-
cern for all the financial institutions.
In credit risk, the rating of a borrower has an important impact on the terms of the credit.
For example, the new capital restrictions imposed by Basel III, use the ratings to fix the
amount of money required for the lender to be covered.

3.1 Filtering of counting process

The project of this internship is the continuity of the work lead by Areski Cousin for the
thesis of Réda Khéliouen described in [4].
In this last work, different approaches have been compared to estimate factor-based migration
models. These models admit probabilities of transitions that depend on dynamic factors.
Two types of models were considered: the model “ordered Probit” (structural approach) as
described in the example [6] and the “multi-state latent factor intensity model” (approach
said of intensity) studied by [8].
We consider the statistical estimation of credit migration models where, the transition matrix
is stochastic and may depend on a pool of common dynamic factors. The underlying factors
aim at representing the evolution of the business cycle. The estimation procedure of such
models differs given that the factors are considered to be observable or unobservable. In
the first approach, one selects observable factors (macroeconomic variables for example) via
economic analysis and then estimates the transition probabilities’ sensitivities by doing a
regression.

In the second case, the hidden factor may be inferred by maximizing the unconditional
likelihood. The latter being very heavy to compute (see for example, [8]), we adapted an
approach proposed by [6] which consists of representing the dynamics of the transition prob-
abilities with the form of a linear Gaussian model. The non-observed factor is then filtered
by the Kalman recursive algorithm. The model parameters are estimated by maximizing the
unconditional likelihood.
One can not be satisfied by this approach since it is based on estimated observations (tran-
sition intensities) and, on the other hand, on the assumption of normality of the estimated
intensities, a hypothesis that does not hold for samples of small size.

The method, presented here, consist to observe the hidden process through the observa-
tions of a counting process. For a bond portfolio, the dynamics of rating migrations can be
modelled by a multidimensional process, each component representing the number of transi-
tions from one rating category to another.
Assuming that the latter admits an intensity that is not observed, is it possible to estimate
this intensity only using the observations of the point process ?

We consider a space with a filtration: (Ω,F ,F = (Ft)t∈[0,T ],P). All the stochastic pro-
cesses dealt are supposed to be adapted to F and integrable on [0, T ].
The problem is to estimate the state Θt of an unobserved process using only the information
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3 The model developed

FNt which results from the observation of a counting process N . By using the least squares
criterion, this leads to determining

Θ̂t = E[Θt|FNt ] .

With the same notations, all the processes O filtered by FNt are written :

Ôt = E[Ot|FNt ]

Unfortunately, the explicit computation of Θ̂ (by the Bayes formula) is only possible in very
simple cases, for example, when N is a mixture of Poisson processes. Moreover, numerical
approaches can be envisaged but they are extremely heavy to implement as soon as non-trivial
models are considered.

The filtering approach is different. It deals with Θ̂ as the solution of a forward EDS (dif-
ferential stochastic equation) that allows, given Θ̂t to compute Θ̂t+dt per a simple recursive
update.
The main result on point process filtering can be stated in the following way (see [2], [7], [10],
[14]). Let Θ be a process of the form

dΘt = at dt+ dMt ,

where M is a martingale with no jumps in common with N . Then, the Θ̂ process checks the
following equation:

dΘ̂t = ât dt+ ηt (dNt − ν̂t dt) , (3.1)

with

ηt =
ˆ(Θ ν)t−
ν̂t−

− Θ̂t− ,

and where ν is the F -intensity of N . The dynamic (3.1) suggests a recursive algorithm to
update the Θ̂ process.

A consequence of (3.1) is that the dynamics of Θ̂ implies ˆ(Θν) whose dynamic implies the

term ˆ(Θν2), and so on ... Therefore this filtering formula induces an infinite nesting problem.

In order to study the dynamics of defaults in a credit portfolio or the dynamics of rating
migrations, this formula of filter must be extended to a multivariate case.

3.2 Extension of the filtration formula

In this section, one proposes an adaptation of the filtering formula to multivariate point
processes and when the unobserved factor admits a finite number of states. Some proofs are
not given in this summary document. They will be detailed in the article being written [3].

3.2.1 Extension of the filter to a multivariate case

In order to study the dynamics of defaults in a credit portfolio or the dynamics of rating
migrations, the classical framework filter formula also studied in [2] and [10], must first be
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3 The model developed

extended to a multivariate case.

Let N j = (N j
t )t∈[0,T ], j = 1, . . . , p, simple counting processes:

N j
t =

∑
0<s≤t ∆N j

s <∞ and ∆N j
s ∈ {0, 1}.

It is assumed that these processes admit a F - intensity νj = (νjt )t∈[0,T ], j = 1, . . . , p, and

that they do not have any common jumps, i.e., ∆N j
t ∆Nk

t = δjk (1 if j = k and 0 otherwise).
In the following, we consider the multivariate counting process N = (N1, . . . , Np) and we
write ν = (ν1, . . . , νp) its intensity from filtration F .

Proposition Let Θ, a square integrable process with the form

Θt =

∫ t

0
as ds+Mt , (3.2)

where a is F -adapted and M is a F -square integrable martingale with no jumps in common
with N . Therefore the process Θ̂ is solution of the EDS

dΘ̂t = ât dt+
∑
j

ηjt (dN j
t − ν̂

j
t dt) , (3.3)

with

ηjt =
ˆ(Θ νj)t−

ν̂jt−
− Θ̂t− , (3.4)

with initial conditions
Θ̂0 = E[Θ0] . (3.5)

3.2.2 Latent factor with finite number of states and application to credit
risk

To solve the issue of infinite imbrication mentioned above, we consider that the intensity ν
of the multivariate counting can only be in a state which belongs to a space with a finite
number of states. Consequently we consider that the hidden factor Θ which governs it is a
Markov chain of number of states finite. Let Θ a Markov chain of number of states finite T =
{1, . . . ,m} having transition intensities constant khi, i 6= h, which checks khh = −

∑
i;i 6=h k

hi.

Introduce the process Ih, defined by

Iht = 1[Θt=h],

The process Θ can be represented by

Θt =
∑
h∈T

h Iht . (3.6)

The filtering theory with a counting process has been applied to credit risk for example in
[5] and [10].
In order to remain realistic and fix the terminology, consider a bond market containing a finite
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3 The model developed

number of individual bonds. All bonds are affected by variable and random market conditions
represented by a hidden Θ Markov chain. An obligation q of the sample is observed between
the dates sq and uq, 0 ≤ sq ≤ uq ≤ T . At all times, the obligation can only be in a single
state belonging to a finite set of states, J = {1, . . . , n}.
This space represents different credit risk scores in descending order, n being the default state.
For example, Standard and Poor’s long-term investment ratings can be translated to AAA =
1, AA = 2, A = 3, BBB =4, ..., D (Default) = 10.
Let Zqt ∈ J the state of the obligation at t and Zq = (Zqt )t∈[sq ,uq ] the process that describes
its evolution. The indicator process and the point process associated to Z are

Jq,jt = 1[Zqt =j], N q,jk
t = ]{s ∈ [0, t];Zqs− = j, Zqs = k}.

The process Zq is governed by its intensity.

P[Zqt+dt = k |Θt = h, Zqt = j] = `h,jk dt+ o(dt).

The processes of each individual Zq are conditionally independent, knowing FΘ
T . However

unconditionally, they are dependent through the effect of FΘ
T . Indeed the change of state of

an obligation will induce the change of state of other obligations. The censorship mechanism
governing (sq, uq) is assumed to be non-informative and can therefore be considered deter-
ministic and belonging to FN0 .

To infer the underlying process Θ, It is sufficient to observe the counting process N jk

defined by

N jk
t =

∑
q

N q,jk
t ,

governed by the F intensities

νjkt = Y j
t

∑
h

`h,jk Iht− ,

with
Y j
t =

∑
q; sq≤t<uq

Jq,jt .

The exposure process Y j is left continuous. It increases by 1 when a Nkj , k 6= j has
jumped, or when a new bond is entered with the note j, and decreases by 1 during a jump of
N jk, k 6= j, or when a bond expires with the note j.

I lt− is the indicator function of our unobserved factor that is equal to 1 in state l.
With such assumptions, we obtain the following form of the filter formula applied to the
indicator of our unobserved process:

dÎht =
∑
i

kihÎit−dt+
∑
j 6=k

(
lh,jk∑
r l
r,jkÎrt−

− 1)Îjt−(dN jk
t − Y

j
t

∑
i

li,jkÎit−dt) (3.7)

In this formula, some parameters are unknown: initial distribution and transition intensities
of Θ :(kij)i,j and (Πi)i.

∀i ∈ [1...m] : Πi = P(Θ1 = i)
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4 Similarities with the Kalman filter

∀i, j ∈ [1...m] : P(Θt+dt = j |Θt = i) = kij dt+ o(dt)

The conditional transition intensities of the observable rating process ((lh,ij)h,i,j) are also
unknown.
In order to make this formula usable, it is necessary to estimate these parameters. The major
part of the work done during the internship was to seek to make a such estimation.

4 Similarities with the Kalman filter

One tries in this section to find similarities with the classical Kalman filter.

The application of the Kalman filter can be defined in two phases. A first equation, of
prediction, provides the image of the hidden state knowing the observations of the previous
times. One second, that of correction which makes possible to correct the error made during
the prediction phase, calculates the image of the hidden state knowing the observations of the
previous and current times (the observation at the present time ”corrects” the estimation of
the previous step). One can refer to the studies made on the classical Kalman filter applied
to probability laws in [11] or in a note written during this internship done in annex.
We identify In and Nn, the hidden state and the observation at the nth iteration. With these
notations, the Kalman filter is as follows:

Equation of correction

E[It|FNt ] = f(E[It|FNt−], Nt)

Equation of prediction

E[It|FNt−] = g(E[It−|FNt−])

It is possible to see in the filter formula, (3.7), a similar decomposition to the one in a
classical Kalman filter. Using the filter formula we calculate:

E[It|FNt−] = E[E[It|FNt ]|FNt−]

= E[It−|FNt−] +
∑
i

kihÎit−dt+
∑
j 6=k

lh,jkÎht−∑
r l
r,jkÎrt−

E[dN jk
t |FNt−]− Îht−E[dN jk

t |FNt−]

− Y j
t l
h,jkÎht−dt+ Y j

t

∑
i

li,jkÎit−Î
h
t−dt.

Then we are looking to

E[dN jk
t |FNt−] = E[E[dN jk

t |Ft−]|FNt−]

= E[νjkt dt|FNt−]

= E[Y j
t

∑
h

lh,jkIht−dt|FNt−]

=
∑
h

lh,jkÎht−dt
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4 Similarities with the Kalman filter

Since Y j
t is FN predictable. Therefore we obtain:

E[It|FNt−] = E[It−|FNt−] +
∑
i

kihÎit−dt+
∑
j 6=k

lh,jkÎht−∑
i l
i,jkÎit−

Y j
t

∑
l

ll,jkÎ lt−dt

− Îht−Y
j
t

∑
l

ll,jkÎ lt−dt− Y
j
t l
h,jkÎht−dt+ Y j

t

∑
i

li,jkÎit−Î
h
t−dt

= E[It−|FNt−] +
∑
i

kihÎit−dt.

What it leads us to distinguish:

E[It|FNt−] = Îht− +
∑
i

kihÎit−dt

E[It|FNt ] = E[It|FNt−]︸ ︷︷ ︸
prediction

+
∑
j 6=k

(
lh,jk∑
r l
r,jkÎrt−

− 1)Îjt− (dN jk
t − Y

j
t

∑
i

li,jkÎit−dt)︸ ︷︷ ︸
newinformation

We can identify Y j
t

∑
i l
i,jkÎit−dt as the information predicted from the previous step and

dN jk
t − Y

j
t

∑
i l
i,jkÎit−dt the new information observed and brought by a jump at t. It would

therefore be possible to estimate the parameters using nonlinear and non-Gaussian extensions
of the Kalman filter.
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5 The solution proposed: an adaptation of an EM algorithm

5 The solution proposed: an adaptation of an EM
algorithm

In this section, one proposes an adaptation of the classical HMM BaumWelh algorithm in
order to use the parameters estimations in the filtering formula (3.7).

One notes zta|tb = (zta, ..., ztb) the sample of processes describing the evolution of the bonds
ratings between the times a and b and we note π the initial distribution of θ.
We write z \ zk = (z1...zk−1, zk+1...zT ), the vector without the kth component.
So one notes Z = (z1, ..., zd) the total sample.

In our case, we dispose of a sample of d trajectories of z which are not independent. In
deed, it is the same trajectory of θ, the hidden factor, which governs the ones of each element
of the sample.
The proposed method is a maximisation expectation (EM) algorithm for hidden Markov
chains (HMM), adapted to our model. We can find work on the classical model in [13], [1],
[15] and [12].
Indeed, there are some notable differences with the model that we want apply to the filter
formula (3.7) page 16, and the classical one:
-The BaumWelsh theorem is an estimation in discrete time (the idea of duration is not con-
sidered).
-The rating status depends only on the state of the hidden factor. In our case, it also depends
on the previous rating (one is talking about conditional probabilities transitions).
-The elements of the sample of observations (the different ratings of the different obligations)
are not independent because they come from the same realisation of the factor Θ not ob-
served.
The first step of the classical algorithm is to replace the missing data (the states of Θ) with
estimators computed from the observations and the previous estimation of the parameters (to
which a consistent initial value has been assigned).
The second is to maximize a conditional likelihood that leads us to obtain a better estimate
of our parameters. These new estimates will then be used to repeat the first step in the next
iteration.

5.1 Hypothesis

In hidden Markov chain models, an unobservable chain governs another observable.
We recall the fundamental assumption of a Markov chain: the transition from one state to
another depends only on the current state (no memory):

P (zt|z1, ...zt−1) = P (zt|zt−1)

For the classical model HMM, one has a strong hypothesis :

P (zt|z1, .., zt−1, θ1, ..., θt) = P (zt|θt)
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Formally, the future observation depends only on the state in which the unobserved chain
is located.
This hypothesis is a bit too strong for our model. One proposes an extension of the model,
by assuming:

P (zt|z1, ...zt−1, θ1, ..., θt) = P (zt|θt−1, zt−1)

For the sake of notation, we assume here rather

P (zt|z1, ..., zt−1, θ1, ..., θt) = P (zt|θt, zt−1)

During this internship, the proposed solution consists in theoretically adapting the algo-
rithm to the model.
Indeed, the fact that the probability of the observations does not depend only on the state
(as it is the case in classical HMM models) but also on the previous observation, leads us to
reconsider the main algorithm while being inspired by it.
It was also decided to estimate the parameters of the discrete model in order to use them in
our filtration formula, (3.7), which describes a continuous phenomenon. On a time step of
subdivision sufficiently small, this approximation seems quite reasonable but does not give a
completely trustful description of the model.

5.2 The computations of the estimators

One define the probability forward:

αt(j) = P (Z1|t = Z1|t, θt = j)

and the probability backward:

βt(j) = P (Zt+1|T = Zt+1|T |θt = j, Zt = Zt)

We can notice that

αt(j) = P (Z1|t = Z1|t, θt = j) =
∑
k

P (Z1|t = Z1|t, θt = j, θt−1 = k)

=
∑
k

∏
d

P (zdt = zdt |Z1|t−1 = Z1|t−1, θt = j, θt−1 = k)P (Z1|t−1 = Z1|t−1, θt = j, θt−1 = k)

=
∑
k

∏
d

P (zdt = zdt |Zt−1 = Zt−1, θt = j)P (θt = j|θt−1 = k, Z1|t−1 = z1|t−1)P (θt−1 = k, Z1|t−1 = z1|t−1)

=
∑
k

∏
d

(P (zdt = zdt |zdt−1 = zdt−1, θt = j))P (θt = j|θt−1 = k)αt−1(k)

So we have with our parameter:

αt(j) =
∑
k

Kkjαt−1(k)
∏
d

Lj,z
d
t−1z

d
t

Similarly, we will recursively derive the backward probability:
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βt(j) = P (Zt+1|T = Zt+1|T |θt = j, Zt = Zt)

=
∑
l

P (Zt+1|T = Zt+1|T , θt+1 = l|θt = j, Zt = Zt)

=
∑
l

P (Zt+2|T = Zt+2|T |θt+1 = l, Zt+1 = Zt+1, Zt = k, θt = j)P (Zt+1 = Zt+1, θt+1 = l|θt = j, Zt = Zt)

=
∑
l

P (Zt+2|T = Zt+2|T |θt+1 = l, Zt+1 = Zt+1)
∏
d

(P (zdt+1 = zdt+1|θt+1 = l, θt = j, Zt = Zt)) ∗ P (θt+1 = l|θt = j)

=
∑
l

P (Zt+2|T = Zt+2|T |θt+1 = l, Zt+1 = Zt+1)
∏
d

(P (zdt+1 = zdt+1|θt+1 = l, zdt = zdt )) ∗ P (θt+1 = l|θt = j)

So

βt(j) =
∑
l

βt+1(l)Kjl
∏
d

Ll,z
d
t z

d
t+1

Both estimators will be used to replace our missing data in the maximization phase.

We write

ut(j) = 1(θt=j) (5.1)

vt(k, j) = 1(θt=j,θt−1=k) (5.2)

ût(j) = P (θt = j|Z1|T = Z1|T ) (5.3)

v̂t(k, j) = P (θt = j, θt−1 = k|Z1|T = Z1|T ) (5.4)

We will use the respective estimators:

ût(j) = P (θt = j|Z1|T = Z1|T )

=
P (Zt+1|T = Zt+1|T |θt = j, Zt = Zt)αt(j)

P (Z1|T = Z1|T )

=
P (Zt+1|T = Zt+1|T |θt = j, Zt = Zt)αt(j)

LT

=
βt(j)αt(j)

LT

With

LT = P (Z1|T = Z1|T ) =
∑
j

αT (j),

the like-hood on the totality of the sample.

and:
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v̂t(k, j) = P (θt = j, θt−1 = k|Z1|T = Z1|T )

=
P (θt = j, Zt|T = Zt|T |Z1|t−1 = Z1|t−1, θt−1 = k)αt−1(k)

LT

=
P (Zt+1|T = Zt+1|T |Z1|t = Z1|t, θt−1 = k, θt = j)P (θt = j, Zt = Zt|Z1|t−1 = Z1|t−1)αt−1(k)

LT

=
P (Zt+1|T = Zt+1|T |Zt = Zt, θt = j)P (Zt = Zt|Z1|t−1 = Z1|t−1, θt = j, θt−1 = k)P (θt = j|θt−1 = k, Z1|t = Z1|t)αt−1(k)

LT

=
P (Zt+1|T = Zt+1|T |Zt = Zt, θt = j)

∏
d(P (zdt = zdt |θt = j, zdt−1 = zdt−1))P (θt = j|θt−1 = k)αt−1(k)

LT

=
βt(j)K

kjαt−1(k)
∏
d L

j,zdt−1z
d
t

LT

5.3 Estimation of the parameters

Technical notes

A first technical point (1) that will be used several times in the following. It consists to
find:

max
πj ,j=1..m

∑
j

cj log(xj)

subject to − xj ≤ 0∑
j

xj − 1 = 0.

Note that uniform distribution is a feasible solution. KKT can therefore be applied to this
system. We recall the notations:

min
x

f(x)

subject to hj(x) ≤ 0,

aTi x− b = 0.

Therefore x is solution iif :

We have a feasible solution and

∇(f(x)) +ATλ+
∑
j

µj∇(hj(x)) = 0

With this equation we have

− cj
xj

+−
∑
i

µi +
∑
i

λi = 0

If the (λi)i are equal to 0 then

xj = − cj∑
i µi

By Summing the last equality and equalising to 1 results in:∑
i

µi = −
∑
j

cj

and finally :
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xj =
cj∑
i ci

Our second technical point noted (2) is based on the concavity of the log:

For two suites ui and vi:

ln(

∑
i vi∑
i ui

) = ln(
∑
i

uivi∑
k ukui

)

≥
∑
i

ui∑
k uk

ln(vi)−
ui∑
k uk

ln(ui)

=
1∑
k uk

(
∑
i

(ui ln(vi)− ui ln(ui)))

The maximization phase consists of finding better parameters than those of the previous
iteration. We notice M = (π(q), L(q),K(q)), the parameters of the current iteration (q).

We also notice M̃ = (π(q+1), L(q+1),K(q+1)), the new parameters to estimate.
With the notations of the technical point (2), we note:

ui = P (Z, θ = θi|M)

vi = P (Z, θ = θi|M̃)

where θi ∈ NH , H the finite number of states of θ.
Then by using (2) we have:

ln(

∑
θi
vi∑

θi
ui

) = ln
P (Z|M̃)

P (Z|M)

≥ 1

P (Z|M)
(
∑
θi

ui ln(vi)−
∑
θi

ui ln(ui))

=
1

P (Z|M)
(Q(M, M̃)−Q(M,M))

We therefore try to have a higher likelihood with the new parameters:

P (Z|M̃) ≥ P (Z|M)

With the last equality it amounts to seeking to maximize

Q(M, M̃) =
∑
θ

P (θ = θ, Z|M) ln(P (θ = θ, Z|M̃).

So we cut:

ln(P (Z, θ|M̃)) = ln(P (Z|θ, M̃)) + ln(P (θ|M̃))

= The(zd)d are independent knowing the unobserved factor

= log(P (θ1)) +
∑
t

ln(P (θt|θt−1)) +
∑
d

ln(P (zd1|T |θ))

= log(P (θ1)) +
∑
t

ln(P (θt|θt−1)) +
∑
d

ln(P (zdT |zd1|T−1, θ)P (zd1|T−1|θ))

= log(P (θ1)) +
∑
t

ln(P (θt|θt−1)) +
∑
d

∑
t

ln(P (zdt |zdt−1, θt)

So
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Q(M, M̃) =
∑
θ

log(P (θ1))P (θ, Z|M)

+
∑
θ

∑
t

ln(P (θt|θt−1))P (θ, Z|M)

+
∑
θ

∑
d

∑
t

ln(P (zdt |zdt−1, θt)P (θ, Z|M)

=
∑
θ\θ1

∑
θ1

log(P (θ1))P (θ, Z|M) +
∑

θ\θt,θt−1

∑
θt−1,θt

∑
t

ln(P (θt|θt−1))P (θ, Z|M)

+
∑
θ

∑
d

∑
t

ln(P (zdt |zdt−1, θt)P (θ, Z|M)

=
∑
θ\θ1

∑
i

log(P (θ1 = i))P (θ1 = i, θ \ θ1, Z|M)

+
∑

θ\(θt,θt−1)

∑
i,j

∑
t

ln(P (θt = i|θt−1 = j))P (θ \ (θt, θt−1), θt = i, θt−1 = j, Z|M)

+
∑
θ\θt

∑
i

∑
d

∑
t

ln(P (zdt |zdt−1, θt = i)P (θ \ θt, θt = i, Z|M)

=
∑
i

log(P (θ1 = i))
∑
θ\θ1

P (θ1 = i, θ \ θ1, Z|M)

+
∑
t

∑
i,j

ln(P (θt = i|θt−1 = j))
∑

θ\(θt,θt−1)

P (θ \ (θt, θt−1), θt = i, θt−1 = j, Z|M)

+
∑
d

∑
t

∑
i

ln(P (zdt |zdt−1, θt = i)
∑
θ\θt

P (θ \ θt, θt = i, Z|M)

=
∑
i

log(P (θ1 = i))P (θ1 = i, Z|M)

+
∑
t

∑
i,j

ln(P (θt = i|θt−1 = j))P (θt = i, θt−1 = j, Z|M)

+
∑
d

∑
t

∑
i

ln(P (zdt |zdt−1, θt = i)P (θt = i, Z|M)

=
∑
i

log(P (θ1 = i, Z|M))πi

+
∑
t

∑
i,j

ln(Kij)P (θt = i, θt−1 = j, Z|M)

+
∑
d

∑
t

∑
i

∑
k,r

ln(li,rk)P (θt = i, Z|M)1(zdt =r,zdt−1=k)

One can then maximize by considering the three terms independently by applying the tech-
nical point (1).
We must respect:

∑
i

πi = 1∑
i

Kji = 1∑
r

Li,kr = 1
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One obtains then :

πi =
P (θ1 = i, Z|M)∑
j P (θ1 = j, Z|M)

= P (θ1 = i|Z,M) = û1(i) (5.5)

Li,kr =

∑
d

∑
t P (θt = i, Z|M)1(zdt =r,zdt−1=k)∑

d

∑
t

∑
r P (θt = i, Z|M)1(zdt =r,zdt−1=k)

=

∑
d

∑
t P (θt = i, Z|M)1(zdt =r,zdt−1=k)∑

d

∑
t P (θt = i, Z|M)1(zdt−1=k)

=

∑
d

∑
t P (θt = i|Z,M)1(zdt =r,zdt−1=k)∑

d

∑
t P (θt = i|Z,M)1(zdt−1=k)

=

∑
d

∑
t ût(i)1(zdt =r,zdt−1=k)∑

d

∑
t ût(i)1(zdt−1=k)

(5.6)

Kji =

∑
t P (θt−1 = j, θt = i, Z|M)∑

t

∑
i P (θt−1 = j, θt = i, Z|M)

=

∑
t P (θt−1 = j, θt = i|Z,M)∑

t P (θt−1 = j|Z,M)

=

∑
t v̂t(j, i)∑
t ût−1(j)

(5.7)

5.4 The algorithm

Here, one details the different steps of the algorithm.

It is crucial to provide a first image of conditional probabilities of transition. For this, we use
the classical density estimator of a Markov chain:

∀i 6= j : λ̂ij =
Nij(T )∫ T

0 Yi(s)ds

(see the studies in [9] and [4]).

With Nij(T ) the number of jumps from i to j over the duration of the sampling and
Yi(s) the number of individuals in state i at date s. To compute the denominator is similar
than calculating the aggregate duration of all individuals spent in state i. Subsequently, we
compute:

λi =
∑
i 6=j

λij

To obtain a transition probability for a duration, we use the matrix exponential:

P (t) = exp(λt)
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Iterations

We do the step (E) :
We derive two estimators on the Θ hidden variable using the recursive calculation of two
probabilities: a α probability called forward and an another β called backward.

Computation of α:

In t=0:
We do not know the state of the individuals before the simulation. To remedy this, we
consider that the initial state is randomly distributed. So we have :

∀i :

α1(i) = P (Z1 = Z1, θ1 = i)

=
∏
d

P (zd1 = zd1 |θ1 = i)P (θ1)

=
∏
d

(
∑
j

P (zd1 = zd1 |zd0 = j, θ1 = i)P (zd0 = j|θ1 = i))π(i)

=
∏
d

(
∑
j

P (zd1 = zd1 |zd0 = j, θ1 = i)P (zd0 = j))π(i)

=
∏
d

(
∑
j

Li,jz
d
1P (zd0 = j))π(i)

We estimate then P (zd0 = j) with the proportion of individuals in the state j just before
the beginning of the simulation.

To do for t = 2...T :
To do for all j:

α
(q)
t (j) = P (Z1|t = Z1|t, θt = j)

=
∑
k

Kkj(q)α
(q)
t−1(k)

∏
d

Lj,z
d
t−1z

d
t (q) (5.8)

Computation of β:

To do for all j,k :
βT (j, k) = 1

To do for all t = T − 1...1:
To do for all j:

β
(q)
t (j) = P (Zt+1|T = Zt+1|T |θt = j, Zt = Zt)

=
∑
l

βt+1(l)Kjl(q)
∏
d

Ll,z
d
t z
d
t+1(q) (5.9)

26



5 The solution proposed: an adaptation of an EM algorithm

We compute the like-hood of the observations:

L
(q)
T =

∑
j

α
(q)
T (j)

Then the estimators of the missing data:

û
(q)
t (j) = P (θt = j|Z1|T = Z1|T ) =

β
(q)
t (j)α

(q)
t (j)

L
(q)
T

To initialise v̂, we choose:

v̂
(q)
1 (j, k) = P (θ1 = k, θ0 = j|Z1|T )

Therefore we use:
v̂

(q)
1 (j, k) = P (θ1 = k|θ0 = j)P (θ0 = j)

= Kjkπ(j)

To do for t = 2...T :

v̂
(q)
t (j, k) = P (θt = j, θt−1 = k|Z1|T = Z1|T ) =

β
(q)
t (k)Kjkα

(q)
t−1(j)

∏
d L

k,zdt−1z
d
t (q)

L
(q)
T

We then go to the step (M):

It uses the estimators of each individual to finally compute our parameter estimators of
the following iteration:

π
(q+1)
i = ûq1(i)

Li,kr(q+1) =

∑
d

∑
t û

(q)
t (i)1(zdt =r,zdt−1=k)∑

d

∑
t û

(q)
t (i)1(zdt−1=k)

Kji(q+1) =

∑
t v̂

(q)
t (j, i)∑

t û
(q)
t−1(j)

End

Depends on the desired precision.
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6 Implementation and results

In this section, the different steps and choices for the algorithm’s implementation are pre-
sented.

6.1 Numerical issue

One issue encountered concerns the numbers manipulated. Indeed, during the derivation of
the backward, forward probabilities, and then for the estimators, a high number of probabil-
ities are used. The issue comes from the adaption of the original model over the fact that
the observations arise from the same realisation of Θ. With this hypothesis, the probabilities
manipulated have to deal with all the sample and therefore a high number of joined experi-
ences.
The computations induce the manipulation of very small numbers (formula dealing with prod-
ucts of thousands of numbers inferior than 1).
The computer is not able to work with so small numbers and attributes them the null value.
This approximation make the model dysfunctional.
Since the same kind of techniques have been used to tackle this issue, we will only detail as
example the computation of the estimator ût(j) = P (θt = j|Z1|T = Z1|T ).

Let us remind that:
αt(j) =

∑
k

Kkjαt−1(k)
∏
d

Lj,z
d
t−1z

d
t

In this recursive formula one can notice that the product of the conditional probabilities L
and the terms αt−1(k) are tiny. We will work by taking the logarithm of the value. If we note
m(t) the mean of (log(αt−1(k)))k, the formula can be rewritten as:

log(αt(j)) = log(
∑
k

Kkjαt−1(k)) +
∑
d

log(Lj,z
d
t−1z

d
t )

The member on the right is therefore easily calculable as sum of log number. For the first part:

log(
∑
k

Kkjαt−1(k)) = log(
∑
k

Kkjelog(αt−1(k))−m(t−1)+m(t−1))

= log(em(t−1)
∑
k

Kkjelog(αt−1(k))−m(t−1))

= m(t− 1) + log(
∑
k

Kkjelog(αt−1(k))−m(t−1))

With this form, removing the mean in the exponential allows us to avoid the rounding error.
With this trick, we avoid all the approximations. One can note that the mean can be replaced
by the maximum or the minimum depending of the data.
We compute with a similar method log(βt(k))t,k and the like-hood LT .
It is then easy to compute :

log(ût(j)) = log(αt(j)) + log(βt(j))− log(LT )

On which one can apply the exponential function to have directly ût(j) since û may not have
an extreme value.
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6.2 The data

The data chosen in this report come from OpenDataSoft. One chooses the base ”Credit Rating
Agency Ratings History Data” and more precisely the ratings given by Moody’s Investor’s
services. At this moment, it was difficult to know if it is better to have a homogeneous or
heterogeneous sample (to compare the ratings of really different instruments might make no
sense).
Therefore one chose the data which concerns the financial instruments and one limited our
sample at 30000 values for the sake of rapidity.
The main attributes of a value or jump are the following:
-Issuer name
-Rating
-Maturity Date
-Rating action date
These choices were personal and can be different.

6.3 Implementation and parameters

The language used is Python.
The code is composed in 5 parts. one distinguishes the main function and 4 modules:

-Parameters: where one can find all the main parameters for the implementation. In partic-
ular there are the number of states of Θ, the interval of dicretization for BaumWelsh called
Delta and the number of cuts per days for the computation of the filter formula,(3.7) page
16, (see the subsection about the discretization).
-Data: The module where all the functions for the treatment of the data are implemented.
The important parts of the data are stored in a list of dictionaries. Each dictionary is liked
to a date and contains the current ratings of each obligation at this date.
One can also find all the functions which computes some information as the number of jumps,
the initialisation and perturbation of the conditional transition probabilities of the hidden pa-
rameter.
-BaumWelsh: All the functions which concern the algorithm are stored in this module. Es-
pecially, one locates the different computations of the estimators and parameters with the
update mentioned above to avoid the underflow.
-ModelTheta: Here one can find the function for the filtration formula ((3.7)).

6.4 The discretization of the model

Two discretizations have been necessary during the implementation.
The first one concerns the BamWelsh algorithm. With our data, the interval of time deals
with 2 thousands days. Therefore it seems essential to choose well the length of the pieces of
the interval’s cutting.
If our discretization is too fine, we will have a lack of rapidity and we will risk to not have
enough jumps during these small periods.
Then the algorithm will not be efficient at all. On the other end if the interval of cutting
in too large, we will miss too much information. In deed, the algorithm can only consider
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an only jump during one period for one obligation. If this last has the time to make several
jumps, the algorithm will miss this piece of information.
We had to find a compromise and have chosen 20 days.
The second cutting, done for using the filtration formula (3.7), had to be different.
In deed, this equation describes a continues phenomenon thus we had to choose a cutting as
fine as possible in discrete time. Therefore the first idea was to try intervals of 1 day. But
each time, the system diverged.
That might be explained by the fact that 1 days was still too large. The interval of times had
to be very small to be used with the density.
Plus, the ∆N should not exceed 1 since there is not simultaneous jumps. Although we can
sometimes observed more than 10 identical jumps at the same day.
Furthermore the data do not permit us to cut more than that (we don’t know precisely when
a jump appends in the day). To solve this issue, one decided to cut each days in div=100
and then to attribute to each part, uniformly, what appended during the day (the number of
jumps in the day divided by 100).

6.5 Implementation’s choices

To make the results clearer and more analysable, one decided to reduce the number of rating
to 3. Since the initial number of different ratings was 22 we have joined under the same
rating, the ratings with the same first letter.
Therefore we worked with the following ratings: A,B,C (C is almost the state of default).

index 1 2 3

rating A B C

-We reduced the study at 30000 different data for the sake of rapidity.
-For the estimation of the parameters, we chose an interval of dicretization of 20 days.
-For the filtration formula (3.7), we chose an interval of dicretization of 1

100 .
-We modified in the following tests the number of states of Θ from 2 to 3.

6.6 The different experiments

One experience is done in two phases.
Firstly, the first one chooses the initial conditions.
The initial value of L, the conditional probabilities of a rating, is given as detailed in the
algorithm (we use the classical estimator of a density of a Markov chain).
Then one can add different perturbations ε to each matrices of transition to differentiate the
conditioning by the different states of Θ.
For the values of K and π, one works with the uniform distribution to which we might add a
perturbation to promote or disadvantage some transitions.
The algorithm is run to estimate the 3 parameters. Then they are used, during a last step,
in the filtration formula (3.7).
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6.6.1 Uniform initial conditions

One limits our studies for the beginning at 2 states of Θ.
The first idea is to try to run the algorithm with no perturbation. In other words, one takes,
as initial conditions, uniform distributions for Π and K, respectively, the initial distribution
of the hidden parameter and its transitions probabilities.
Furthermore one keeps the same matrix of transition probabilities (the one got from classical
estimation of the density) for all states of Θ. By this way ones considers from the beginning
that Θ has no effect on the ratings and the same chance to appear.
Since one brings no information, without any perturbation, the algorithm is not able to
differentiate the states of Θ. Therefore it is normal that it sends exactly the same parameters
that one has given to him.

(a) Estimation of the density l (b) Initial L[0] and L[1]

Figure 6.1 Initial transformation of the rating process densities matrices into probabilities

(a) outcome of L[0] and L[1]

(b) Outcome of Pi (c) Outcome of K

Figure 6.2 Estimation of the parameters
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Figure 6.3 Θ̂t on 100 days

In that way, the algorithm can’t send any information about Θ whatever the data are. Why
would it favour some states compared to others if it has no profile, no way to differentiate
them from the beginning ?
With such parameters, it is not surprising that the filtration formula (3.7) remains at 0.5, the
mean of the possible values of Θ.

6.6.2 Perturbation of L with ε = 10−8 and 2 states of Θ

With the previous result, it seemed to be necessary to bring some information about the
states of the hidden parameter to help the algorithm to differentiate them.
Therefore, with 2 states, it seemed to be logical to choose one state which tends to influence
the obligations to jump to a better grade, the progressive state and the other which tends to
influence the obligation to a worst grade, the recessive state.
These two states would describe the health of the global economy. This would help to respond
to the following question : Is the economy in a favourable state to provide better confidence
to credit ?
To model that difference, one decides to remove ε to the recessive transition probabilities and
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to add it to the progressives for the progressive state, the state 1. The opposite manipulation
is done for the recessive state 0.

(a) Initial L[0] (b) Initial L[1]

(c) Outcome of L[0] (d) Outcome of L[1]

Figure 6.4 Evolution of L

One may observe that 0 remains almost the recessive state and 1 the progressive.
In deed, one can notice that 0 favours the degradation transitions A→ B and B → C whereas
the improvement transition B → A is more frequent in 1.
It is also clear that 1 is more stable than 0 since 1 favours the most the stationary distributions.
It is also remarkable that 0 is favourable to the recovery distribution C → B. So it is better
to be in 0 only if you are in C. The riskier and recessive state 0 is preferable when you have
already the worst rate.
The rare events C → A and A→ C are more frequent in 1 but remain negligible.

(a) Outcome of K
(b) Outcome of Pi
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Figure 6.6 Θ̂t on 200 days

(a) Outcome of sigma[A][C] (b) Out of sigma[B][C]

The studies of the the new of value of K and π induce a major part of the time spent in 1,
the stable and progressive state, with frequent but short jumps to 0 the recessive state.
The mean of Θ of 0.82464578 confirms that the state 1 is the more frequent.

One can deduce that the obligations were used to be in a state where the chances of im-
provement and stagnation are higher. Sometimes they move to a riskier state where they
tend more to degrade their own grates. So, the obligations live a period of recession but never
for a long time (the transition probability from 0 to 1 is 0.71).
This short moment is also beneficial if an obligation is already in poor condition. In the
riskier state, the chance to recover from the ”default” is higher.
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6.6.3 Perturbation of L with ε = 0.001 and 3 states of Θ

In this experiment, a perturbation makes the state 0 progressive and 1 recessive as before.
The state 2 added will keep the value of the estimation and should be the one closest to the
data since one did not modify it.

(a) Initial L[0] (b) Initial L[1]

(c) Initial L[2]

35



6 Implementation and results

(a) outcome of L[0] (b) outcome of L[1]

(c) outcome of L[2]

(a) Outcome of K

(b) Outcome of Pi
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Figure 6.11 Θ̂t on 200 days

(a) Outcome of sigma[0][2] (b) Outcome of sigma[1][2]

The mean of Θ is 1.43832512. That shows that 2 is clearly the most frequent state. It is
not surprising since it was the state with the initial conditions the closest to the data.
0 remains the recessive state with the highest probabilities of degradation (A to B and B to
C). The recessive one has also the highest chance of recovery ( the jump from C to B).
1 remains the progressive since it is conducive to the improvements from B to A.
2 takes position between these two states with the highest probabilities of the rare and big
jumps (between C and A).

The values of the parameters and the mean of Θ induce a major part of the time spent
in 2 with some short jumps to 1 and 0. One can observe that the direct jumps are very rare.
That confirms that the state 2 is the ”intermediate” state.
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6.6.4 Perturbation of K with ε = −0.49 and 2 states of Θ

It was also interesting to perturb the frequencies of the state of Θ. In that way the transition
from 0 to 1 is a lot increased, and consequently the chance to be in 1.

(a) Initial K (b) Outcome of K
(c) Outcome of Pi

(a) Outcome of L0 (b) Outcome of L1

Figure 6.15 Θ̂t on 200 days

38



6 Implementation and results

One finds the same kind of equilibrium than during the experiment with the perturbation
on L: while one has increased a lot the transition 0 → 1, this last has now a very small
probability. The influence has no effect.
0 and 1 exchange their roles, 0 is the most frequent with fast jumps to 1. It is the stable state
and 1 is the recessive one since it induces A → B and B → C. On can therefore make the
same interpretations on the economy than during L’s perturbations.

The algorithm sends back the same kind of profile for the states of Θ whatever the ini-
tial conditions are.
The results might be different because the equilibrium found are local.
The economy is used to be in a stable and positive state for the credit and knows regular and
short jumps to a negative state where an obligation has more chance to deteriorate itself but
also to recover from the default (a riskier state).
This study may be a tool to detect trouble periods for the credit risk.

6.6.5 Crisis detection

One tries to extend the interval of observations to reaper characteristic moment.
One remains that with this perturbation, Θ is used to stays in 1, the stable and progressive
state with short and frequent jumps to 0, the riskier and recessive one.

(a) Out of Θ, from the 8th semptember 2013 to the 15th of september 2017 in hundredths of a day

One can notice that it seems that there were many jumps around 630 days on the scale of
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time. This moment corresponds to the summer of 2015. The results show that there were
lot of jumps to the recessive state during this period. Therefore the economy was in a riskier
and in an unfavourable state for the credit.
That is not surprising since the 12th june 2015, the stock market crashed in China (A third
of the value of Shanghai Stock Exchange was lost in a month).

6.7 Summary

The algorithm uses the perturbation to find an equilibrium which fits the best as possible the
data. Theses equilibrium are local, therefore the algorithm does not send back exactly the
same result with different initial conditions but almost.
The economy is used to be in a stable and progressive state with frequent and short jumps
to a recessive and riskier state for the credit.
A raise of the frequency of these jumps may be a witness of a crisis.
It remains difficult to interpret the result when the number of state of Θ increases since one
has to give initial perturbations.
Plus it is arduous to detect which probability has the weight in a state of Θ.
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7 Extension and criticisms of the solution proposed

7.1 Some critics

One can criticize this solution on many points:

The Filtration formula (3.7) describes a continuous model whereas the algorithm of the pa-
rameters estimation considers that the time is discrete.
One looses the information of duration. To be as precise as possible, the passage using the
matrix logarithm should also be avoided.
-The cutting of the days (to not have more than one jump each step) to use the filtration
formula (3.7) is not really an acceptable approximation. One should cut the line of time at
the jumps dates.
-The selection of the data has been done quickly. It would have been interesting to choose
different types of data (not financial ones), or by mixing types of instruments rated. Since
the financial instruments are used to remain to the highest rating, they might not be the best
type in order to try to have a clear image of the economy.

7.2 The possible extensions and improvements

Several perspectives emerge from this work.

7.2.1 The choice of initial conditions

Many kinds of perturbations may be tested to better represent the real economy.
First the perturbation should not be the same for all the transitions. One must have different
ε for each transitions, depending on the value of the transition probability. Indeed it is not
acceptable that a very frequent transition looses the same probability than a rare event.
An other idea would consist in keeping the profile of the conditional transition probabilities
matrices. By reducing the number of unknown parameters and in estimating only the fixed
perturbation ε, we would have an algorithm more efficient. Furthermore we can keep the
profile of progressive and recessive matrices and therefore have a better quality analysis.

7.2.2 Estimation of the parameters in continues time

A research track would extend the estimation algorithm proposed to continuous time.
Indeed, a continuous time model keeps the precise date of bonds rating changes whereas a
discrete model will confuse the dates of jumps belonging to the same period of subdivision.
This loss of information is not negligible and therefore represents an important issue of our
model.

A second improvement would use the filter formula (3.7) directly during the algorithm. The
estimators used in the algorithm (5.3) and (5.4) (obtained with the backward and forward
probabilities) would be directly replaced by the filtered image obtained with the filtration
formula.
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7.2.3 Detection of regimes by statistical classification

Another perspective would be to analyse the sequences of the observed jumps with different
methods of unsupervised learning such as the ones about classification.
By trying to distinguish the similarities among the neighbours, one would like find a cutting
of the sequence of jumps for which Θt would remain in the same state on each part of the
cutting.
For a significant change of values, we will suppose that Θ has jumped to a new state.
Some variations of nearest neighbour classification algorithms (regularly used in DNA se-
quence studies in biology) or the use of convolutional neural networks (CNN), used in image
recognition, would have a real potential for detecting these changes of regime .

7.2.4 Use of the filtration formula

Once the parameters estimated, the filtration formula (3.7) could be used to represent the
dynamics of Θ filtered with the observations. Then, once the model validated on the data
in-sample, different scenarios of Θ could be simulated and projected in order to obtain new
simulations of rating changes.
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8 Conclusion

The achievement of this internship at Nexialog Consulting provided a clear vision of the in-
tegration of a research project into the daily life of an engineer and a company.
I had the chance to experiment the research steps, especially the documentation one, much
longer than expected. When conducting such a project, it was very interesting to observe the
limits between autonomy and support, or freedom and supervision.
From a technical point of view, the management and the outcome of such a project, although
perfectible, represents a real satisfaction. So that an approach to pursue the subject during
a PHD has been initiated.
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