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Modeling the Term Structure of Interest Rates
with Restricted Boltzmann Machines

Abstract

This thesis investigates if Gaussian restricted Boltzmann machines can be

used to model the Swedish term structure of interest rates. The tested

models are evaluated based on the ability to make one-day-ahead forecasts

and the ability to generate plausible long term scenarios. The results are

compared with simple benchmark models, such as assuming a random

walk. The e↵ects of principal component analysis as data preprocessing

are also investigated.

The results show that the ability to make one-day-ahead forecasts, mea-

sured as a mean squared error, is comparable to a random walk bench-

mark both in-sample and out-of-sample. The ability to generate long term

scenarios show promising results based on visual properties and one-year-

ahead forecast error on semi-out-of-sample data.

The main focus of the thesis is not to optimize performance of the models,

but instead to serve as an introduction to modeling the term structure of

interest rates with Gaussian restricted Boltzmann machines.





Modellering av avkastningskurvan med
restricted Boltzmann machines

Sammanfattning

Denna uppsats unders

¨

oker huruvida Gaussian restricted Boltzmann machi-
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¨
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¨
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¨
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¨
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¨
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¨
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¨

amf

¨
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¨
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¨
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Uppsatsens huvudfokus

¨

ar inte att optimera prestandan f

¨
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allet att vara en introduktion till hur avkastningskurvan kan mo-

delleras med Gaussian restricted Boltzmann machines.
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1 Introduction

The term structure of interest rates plays an important role for many busi-
nesses, governments and other institutions around the world, and being able
to understand and model the term structure is sometimes crucial. Institutions
such as banks, investment funds and insurance companies with a large book of
interest rate dependent assets rely heavily on models of the term structure to
price, hedge and manage the risk of these assets.

To estimate the future value of an asset or a portfolio that depend on interest
rates, you usually need to estimate what the term structure might look like in
the future. Most classical term structure models are not adequate to do this
for longer time horizons, so scenario analysis is often used instead, where a few
interesting scenarios are evaluated. However, designing scenarios is an art and
to estimate the risk associated with a scenario it must have a probability.

Most of the existing literature on term structure modeling is based on stochastic
calculus. A�ne short rate models are common, such as the Vasicek model, the
Cox–Ingersoll–Ross model, the Ho–Lee model and the Hull–White model, where
the short rate is modeled as a stochastic process with certain properties. Even
though the model parameters are calibrated to market data, the models are
designed by humans and can only capture a few desired properties.

This paper will use a di↵erent approach to term structure modeling, based on
machine learning. Machine learning uses statistical techniques to learn useful
structures of a data set without being explicitly programmed. Thanks to the
constant increase in computing power can complex nonlinear relations of large
data sets be modeled in a reasonable time. In recent years have machine learning
become a very popular topic and shown amazing results in a wide variety of
fields, but there is a lack of research in the field of term structure modeling. The
purpose of this paper is to broadly investigate if Gaussian restricted Boltzmann
machines can be used to model the term structure of interest rates and make
one-day-ahead forecasts as well as generate plausible long term scenarios. A
Gaussian restricted Boltzmann machine is chosen since it is a generative model
with a rich theoretical foundation.

1.1 Previous work

The number of topics related to the term structure of interest rates is large and
the amount of literature is vast. Two popular approaches to term structure
modeling, discussed in [14], are no arbitrage models and equilibrium models.
The models can further be classified as one-factor models or multi-factor models
depending on the number of stochastic factors. A popular class of models are
the a�ne one factor short-rate models, where the short rate is the stochastic
factor, usually modeled by a drift term and a stochastic volatility term.

The focus of no arbitrage models is to fit a term structure at one point in time
such that no arbitrage opportunities exists. The term structure of today is an
input to the model. The drift term is usually a function of both the short rate
and time to match today’s term structure, and the volatility term is a constant
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or a function of time to match today’s volatility term structure. Since the drift
and the volatility are functions of time fitted primarily to today’s term structure,
tend the fit of the term structure to disappear with time. An example of a no
arbitrage model is the Hull-White model, introduced in [15].

The focus of equilibrium models is to model the dynamics of the short rate and
construct the term structure based on assumptions about the risk premia. The
term structure of today is an output of the model. The drift term is usually a
function of the short rate, usually to obtain mean reversion, and the volatility
term is a constant or a function of the short rate. These models usually cannot
fit today’s term structure perfectly, but the predictions tend to be better than
for the no-arbitrage models. Examples of equilibrium models are the Vasicek
model and the Cox–Ingersoll–Ross model, introduced in [26] and [4] respectively.

There exist di↵erent methods to assess the quality of forecasts, as discussed in
[6]. One method is to look at the mean squared forecast error (MSFE) or the
root mean squared forecast error (RMSFE). The errors can also be compared
to some naive forecasting method such as assuming a random walk, and thus
forecast no change, or base the forecast on the last observed change.

These classical a�ne models tend to generate poor forcasts of the term structure.
In a study by Du↵ee is it shown that assuming a random walk tend to generate
better forecasts both in-sample and out-of-sample for horizons of three months,
six months and one year, see [7]. Similar results are also shown in a paper by
Velásquez-Giraldo and Restrepo-Tobón for horizons of one day and five days
out-of-sample, see [27].

More advanced models have shown better results with regards to forecasting,
such as a no-arbitrage type of model based on the Nelson-Siegel function, devel-
oped by Christensen, Diebold and Rudebusch in [3]. This model outperforms
the random walk benchmark out-of-sample for horizons of 6 months and 12
months. In a paper by Luo, Han and Zhang are three other extensions of
the Nelson-Siegel function evaluated, which also outperform the random walk
benchmark for a horizon of 21 days out-of-sample, see [18]. However, the one-
day-ahead forecasts out-of-sample are slightly outperformed by the random walk
benchmark.

In a more recent paper by Engle and Siriwardane is a forecasting method based
on an econometric approach developed, see [8]. The model is a reduced rank
vector autoregression with time varying volatilities and correlations.

Gaussian restricted Boltzmann machines have shown promising results regard-
ing forecasting of financial time series when stacked and combined with feed-
forward neural networks, see for example [13]. In that kind of approach are
the restricted Boltzmann machines used to find good features of the data in an
unsupervised way, and then is the feed-forward network used to fine tune the
whole network in a supervised way. The success of this type of network indicate
that the restricted Boltzmann machine can model useful features of financial
time series.

No papers are found where the focus is to model the probability distribution of
a time series with a single Gaussian restricted Boltzmann machine, such as is
done in this thesis. Similar approaches have though been used with mixed results
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on for example images, see [20]. One weakness with the restricted Boltzmann
machine that has been shown, is a di�culty to model dependencies between the
input nodes. An extended version called mean-covariance restricted Boltzmann
machine tries to overcome this problem by modeling a non-diagonal covariance
structure, see [11]. The way this problem will be handled in this thesis is by
using a PCA transformation of the input data.

1.2 Objective

The objectives of this thesis are to:

• Investigate if Gaussian restricted Boltzmann machines can be used to
make one-day-ahead forecasts of the term structure. Compare the results
with simple benchmarks.

• Investigate if the one-day-ahead forecasts can be iterated to generate plau-
sible long term scenarios. Compare the results with simple benchmarks.

• Investigate the e↵ects of PCA as data preprocessing.

1.3 Scope and limitations

Since no previous studies that are using restricted Boltzmann machines as stated
in Section 1.2 are found, the main focus of this thesis is to broadly explore the
possibilities and lay the foundation for future work. Some performance investi-
gation is done, such as comparing a wide range of hidden units and comparing
di↵erent data preprocessings, but model optimization is not a main focus of
the thesis. Deep architectures will not be investigated since it would make the
thesis too extensive.

1.4 Disposition

This thesis is structured as follows. Section 2 contains some financial back-
ground, with a brief introduction to bonds, yields and the term structure of
interest rates. Section 3 begins with an overview of artificial neural networks,
which is one way to view restricted Boltzmann machines. Then follows a more
in depth review of the theory behind graphs, graphical models and Markov
random fields, which is the theoretical foundation of restricted Boltzmann ma-
chines. Then follows a description of the restricted Boltzmann machine, fol-
lowed by training concepts such as maximum likelihood estimation, gradient
ascent, Gibbs sampling, contrastive divergence, annealed importance sampling
and principal component analysis.

Section 4 starts with a description of the raw data and how it was prepro-
cessed and structured to fit the modeling problem. Then follows a description
of the tested architectures, how the training and evaluation were done and which
hyperparameters that were used, how the ensemble was set up and which bench-
mark models that were used. Then follows a description of how the ability to
make one-day-ahead forecasts and generate long term scenarios were evaluated.
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In Section 5 are the results of the study presented, starting with the results re-
garding the one-day-ahead forecasts followed by the results regarding long term
scenario generation. Section 6 discuss the results and how they compare to the
benchmark models and previous research, as well as strengths and weaknesses
with the study. Section 7 finally concludes the thesis and discuss ideas for future
research.

2 Financial background

This section presents a short introduction to bonds, yields and the term struc-
ture of interest rates.

2.1 Bonds

A bond is a tradable loan agreement, where the issuer sells a contract promising
the holder a predetermined payment schedule. Bonds can be issued by gov-
ernments, private and public corporations and financial institutions. They can
have di↵erent credit quality, which refers to the probability that the agreed
upon payments are made on time. Bonds can be traded at exchanges or over
the counter (OTC) and the holders can be pension funds and other financial
institutions, central banks, corporations and private households.

The face value of a bond, also called principal, nominal or par value, is the
amount the issuer borrows and the amount on which interest may be calculated.
A zero-coupon bond promises a single payment, corresponding to the face value,
at a future date called the maturity date. A coupon bond promises more than
one payment until maturity, usually at regular time intervals such as quarterly,
semi-annualy or annualy. The size of the coupon payment is determined by the
face value, the coupon rate and the amortization principle. The cupon rate is
often quoted as annual regardless of the payment frequency.

2.2 Yields

The yield, or yield to maturity (YTM), of a bond is the single discount rate at
which the present value of all future payments equals the current price of the
bond. To determine the yield, a compounding frequency needs to be specified.
The convention can di↵er between markets, but often annual compounding is
used. For a coupon bond with price B

t

at time t and payments Y1, Y2, ..., Yn

at
times T1, T2, ..., Tn

respectively, the yield at time t using annual compounding,
ŷB
t

, is given by the equation

B
t

=
X

Ti>t

Y
i

(1 + ŷB
t

)(Ti�t). (2.1)

The yield at time t of a zero coupon bond with maturity time T , also called
zero-coupon yield, zero-coupon rate or spot rate for time T , is given by
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BT

t

= Y
T

(1 + ŷT
t

)(T�t), (2.2)

where BT

t

is the price at time t and Y
T

is the face value. Rearranged, the
zero-coupon yield is explicitly given as

ŷT
t

= (
BT

t

Y T

y

)�
1

T�t � 1. (2.3)

2.3 Term structure of interest rates

The term structure of interest rates, also known as the yield curve, shows yields
or interest rates as a function of maturity for bonds with similar credit quality.
When it is based on zero-coupon yields, it is called the zero-coupon yield curve.
Most of the traded bonds are coupon bonds, but it is possible to extract or esti-
mate zero coupon yields from the prices of the coupon bonds. A method based
on arbitrage-free pricing is bootstrapping and methods based on regression are
for example cubic splines and Nelson–Siegel parametrization.

For a more comprehensive review of bonds, yields and the term structure of
interest rates, see for example [21].

3 Mathematical background

This chapter begins with a general overview of artificial neural networks. Then
are graphs and graphical models presented, with an emphasis on Markov ran-
dom fields, which are the theoretical foundation of restricted Boltzmann ma-
chines. Then follows a description of the restricted Boltzmann machine, fol-
lowed by training concepts such as maximum likelihood estimation, gradient
ascent, Gibbs sampling, contrastive divergence, annealed importance sampling
and principal component analysis.

3.1 Artificial neural networks

Artificial neural networks (ANNs) are computational models inspired by bio-
logical neural networks of living beings. They are based on a set of processing
units called artificial neurons, which are analogous to biological neurons. The
neurons can be connected in di↵erent ways, where the connections correspond
to biological synapses.

Artificial neural networks are often structured in layers. In general they have an
input layer that receives external data, one or several hidden layers that extract
patterns and an output layer that produces the final output of the network.
Networks with many hidden layers are called deep networks. The architecture
of an artificial neural network defines how the neurons and the connections are
arranged.
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Each neuron, except neurons in the input layer, receives input data which is a
weighted sum of outputs from connected neurons. Then an activation function
is applied, which gives the output of the neuron. The activation function is
usually nonlinear and can be stochastic.

Artificial neural networks can model di↵erent kinds of nonlinear relations by
varying the architecture and using di↵erent nonlinear activation functions. Ar-
tificial neural networks can for example be used for universal curve fitting, pat-
tern recognition and classification, data clustering, prediction and as associative
memory, see [5]. Restricted Boltzmann machines are stochastic generative neu-
ral networks, i.e. they have stochastic activation functions and models the
joint probability distribution over the input data. They can also be regarded
as probabilistic graphical models, which provide useful learning algorithms and
theoretical results, neatly summarized in [9].

3.2 Graphs

A graph is a set of vertices, also called nodes or points, which are connected
by edges, also called lines or arcs. It can be represented as an ordered pair
G = (V,E), where V is the set of vertices and E is the set of edges. An
edge consists of a pair of vertices in V. The pair of vertices can be ordered or
unordered, corresponding to directed and undirected graphs respectively. The
model used in this thesis will be based on undirected graphs.

Below is a list of concepts related to undirected graphs, as defined in [9], that
will be used in the sequel.

• If two vertices v and w are connected with an edge, i.e. {v, w} 2 E, they are
neighbours or adjecent to each other. Thus, the neighbourhood of a vertex v
is the set of vertices connected to v, which can be written as N

v

= {w 2 V :
{v, w} 2 E}.

• A clique is a subset of vertices such that there exists an edge between all pair
of vertices in the subset, i.e. the set of vertices in a clique is fully connected. A
clique is called maximal if it is not possible to include any other vertices from
the graph without the clique ceasing to be a clique. The set of all maximal
cliques will be denoted C.

• A sequence of vertices v1, v2, ..., vn 2 V with {v
i

, v
i+1} 2 E for i = 1, ..., n� 1

is a path from v1 to v
n

.

• A set V ⇢ V separates two vertices v /2 V and w /2 V if every path from v to
w contains a vertex from V.

3.2.1 Probabilistic graphical models

In a probabilistic graphical model, or simply a graphical model, do each vertex
of a graph represent a random variable and the edges represents probabilistic
relationships between these random variables. The graph can then describe con-
ditional dependence and independence properties between the random variables
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and how the joint distribution over all random variables can be factorized into
factors that each only depend on a subset of the variables.

Two main types of graphical models are Bayesian networks and Markov ran-
dom fields. Bayesian networks are acyclical and have directed edges between the
vertices, whereas Markov random fields (MRF) can be cyclical and have undi-
rected edges. This makes them able to represent di↵erent kinds of dependencies.
Restricted Boltzmann machines are a type of Markov random field.

3.2.2 Markov random fields

Given an undirected graph G = (V,E), a sequence of random variables X =
(X

v

)
v2V

forms a Markov random field with respect to G if the joint probability
distribution p(X = x) satisfies the local Markov property. If the probability
distribution is strictly positive for all x, then the local Markov property is
equivalent to the pairwise Markov property and the global Markov property.
The Markov properties are defined as:

• Pairwise Markov property: Two non-adjacent variables are condition-
ally independent given all the other variables, i.e. if {v, w} /2 E, then
p(x

v

, x
w

|(x
t

)
t2V \{v,w}) = p(x

v

|(x
t

)
t2V \{v,w})p(xw

|(x
t

)
t2V \{v,w}) for all

x.

• Local Markov property: For all v 2 V , the random variable X
v

is con-
ditionally independent of all other variables given its neighborhood, i.e.
8v 2 V and 8x, p(x

v

|(x
w

)
w2V \{v}) = p(x

v

|(x
w

)
w2Nv ).

• Global Markov property: Two subsets of variables, A and B, are condition-
ally independent given a third separating subset S, i.e. 8x, p((x

a

)
a2A

|(x
t

)
t2S[B

) =
p((x

a

)
a2A

|(x
t

)
t2S

).

To determine the Markov properties of a probability distribution can some-
times be hard. A theorem that provides a relation between the factorization
properties of the joint probability distribution and the Markov properties is the
Hammersley-Cli↵ord theorem:

Theorem 1. A strictly positive distribution p satisfies the Markov properties
with respect to an undirected graph G if and only if p factorizes over G.

A distribution factorizes over an undirected graph G with maximal cliques C if
it can be written as

p(x) =
1

Z

Y

C2C
 
C

(x
C

), (3.1)

where  
C

is a potential function for clique C. It can be any non-negative func-
tion. Z is the partition function which ensures that the probability distribution
integrates to one. It is given by
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Z =

Z

x

Y

C2C
 
C

(x
C

)dx, (3.2)

where
R
x

dx refers to the integral over all possible values of x, i.e.
R
x

dx =R
x1

R
x2

...
R
xn

dx1dx2...dxn

where n is the number of components of x. Since  
C

is strictly positive 8C 2 C, the probability can be rewritten as

p(x) =
1

Z

Y

C2C
 
C

(x
C

) =
1

Z
e
P

C2C ln C(xC) =
1

Z
e�E(xC), (3.3)

where E =
P

C2C ln C

(x
C

) is called the energy function. This is known as the
Boltzmann distribution or Gibbs distribution.

For a more comprehensive review of graphs and graphical models, see for exam-
ple [2] and [22].

3.3 Restricted Boltzmann machines

A restricted Boltzmann machine (RBM) is a Markov random field where the
graph is bipartite, i.e. the vertices can be divided into two classes such that every
edge has a vertex in each class. This bipartite property is what distinguishes
restricted Boltzmann machines from ”unrestricted ”Boltzmann machines, which
can be fully connected. The restricted connectivity allows for e�cient learning
algorithms based on for example block Gibbs sampling.

Restricted Boltzmann machines can also be viewed as stochastic artificial neu-
ral networks, where each vertex corresponds to a stochastic unit/neuron and
each edge corresponds to a synaptic connection. In the sequel the term unit
and connection will be used when referring to the random variables and their
interactions.

The two classes of units are called visible units and hidden units. The visible
units V = (V1, V2, ..., Vn

) represents the observed data and the hidden units
H = (H1, H2, ..., Hm

) captures dependencies between the observed data. V
and H are multivariate random variables with joint probability distribution
given by the Gibbs distribution:

p(V = v,H = h) =
1

Z
e�E(v,h). (3.4)

(Note that V1, V2, ..., Vn

refers to random variables as opposed to V in section
3.2, which referred to a set of vertices). If the visible and hidden units take
binary values, i.e. v 2 {0, 1}n and h 2 {0, 1}m, the energy function is given by

E(v,h) = �
X

i

a
i

v
i

�
X

j

b
j

h
j

�
X

i,j

v
i

w
ij

h
j

, (3.5)

where a
i

2 R and b
j

2 R are biases associated with the visible and hidden
units respectively and w

ij

2 R is the weight associated with the interaction
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between visible unit V
i

and hidden unit H
j

. This is the standard restricted
Boltzmann machine, sometimes called Bernoulli-Bernoulli RBM. A variant that
can model continuous data is the Gaussian-Bernoulli RBM, sometimes simply
called Gaussian RBM, where v 2 Rn and h 2 {0, 1}m and where the visible
units have normal distributions given the states of the hidden units and where
the hidden units have Bernoulli distributions given the values of the visible
units. The energy function is then given by

E(v,h) =
X

i

(v
i

� a
i

)2

2�2
i

�
X

j

b
j

h
j

�
X

i,j

v
i

�2
i

w
ij

h
j

, (3.6)

where �
i

is the standard deviation of visible unit i given the states of the hidden
units.

Using these energy functions, the Gibbs distribution will factorize into factors
that only depend on the maximal cliques, which ensures that the restricted
Boltzmann machine is a Markov random field according to Theorem 1. Thus,
since the restricted Boltzmann machine only have connections between the two
layers and no connections between units in the same layer, all variables in each
layer will be independent of each other conditioned on the values of the other
layer, i.e.

p(v|h) =
nY

i=1

p(v
i

|h)

p(h|v) =
mY

j=1

p(h
j

|v).
(3.7)

The conditional distributions are given by

p(v
i

|h) = N (v
i

|a
i

+
X

j

w
ij

h
j

,�2
i

)

p(H
j

= 1|v) = sig(b
j

+
X

i

v
i

�2
i

w
ij

),
(3.8)

where N ( · |µ,�2) denotes the normal distribution with mean µ and variance
�2 and sig( · ) denotes the standard logistic function, also called the sigmoid
function. The derivations are found in Appendix B.

Unsupervised learning of a restricted Boltzmann machine corresponds to ad-
justing the parameters of the energy function, denoted as ✓ = (W , a, b), such
that the marginal distribution p(v|✓) is a good representation of the unknown
distribution that has generated the observed data D = (v1,v2, ...,vN

), where
N is the number of observations. The parameters �

i

for i = 1, 2, ..., N are usu-
ally predefined. One way to estimate the parameters is by maximum likelihood
estimation.
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3.3.1 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a general method to estimate the pa-
rameters of a statistical model by maximizing the likelihood (or log-likelihood),
given the observed data. The log-likelihood of a single observation v of a Gaus-
sian Restricted Boltzmann machine is given by

lnL(✓|v) = ln p(v|✓) = ln
1

Z

X

h

e�E(v,h) =

= ln
X

h

e�E(v,h) � lnZ =

= ln
X

h

e�E(v,h) � ln

Z

v

X

h

e�E(v,h)dv,

(3.9)

where
P

h

refers to the sum over all possible values of h, i.e.
P

h1

P
h2

...
P

hm
.

The log-likelihood of the whole data set D is given by

lnL(✓|D) = ln
NY

k=1

L(✓|v
k

) =
NX

k=1

lnL(✓|v
k

). (3.10)

In general it is not possible to analytically maximize the log-likelihood of a
Markov random field, so numerical methods such as gradient ascent are used.

3.3.2 Gradient ascent

Gradient ascent is an optimization algorithm that tries to find the local maxi-
mum of a function by iteratively moving in the direction of the gradient. Applied
to the log-likelihood function, the update rule is give by

✓(t+1) = ✓(t) + ⌘
@

@✓(t)
(lnL(✓(t)|D)), (3.11)

where ⌘ > 0 is the learning rate. The update rule is iterated until some con-
vergence criterion is satisfied or until some maximum number of iterations is
reached. The initial parameter ✓(0) is set to some predefined value.

If the whole data set D is used in each iteration, the method is called batch
gradient ascent. If one data point is used in each iteration, the method is called
stochastic gradient ascent or on-line gradient ascent. Intermediate methods
where a few data points are used in each iteration is called mini-batch gradient
ascent. It is usually more e↵ective to use one or a few data points in each
iteration than to use the whole data set, see in [9] and [2].

The gradient of the log-likelihood of a single observation of a Gaussian restricted
Boltzmann machine is given by
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@ lnL(✓|v)
@✓

= �
X

h

p(h|v)@E(v,h)

@✓
+

Z

v

X

h

p(v,h)
@E(v,h)

@✓
dv =

= �E
p(h|v)[

@E(v,h)

@✓
] + E

p(v,h)[
@E(v,h)

@✓
].

(3.12)

The derivation is found in Appendix C, along with the derivations of the deriva-
tives with respect to the components of ✓:

@ lnL(✓|v)
@w

ij

= p(H
j

= 1|v) vi
�2
i

�
Z

v

p(v)p(H
j

= 1|v) vi
�2
i

dv

@ lnL(✓|v)
@a

i

=
v
i

� a
i

�2
i

�
Z

v

p(v)
v
i

� a
i

�2
i

dv

@ lnL(✓|v)
@b

j

= p(H
j

= 1|v)�
Z

v

p(v)p(H
j

= 1|v)dv.

(3.13)

The integral over v is usually intractable, so the expectations will be approxi-
mated using samples based on Gibbs sampling, which is a Markov chain Monte
Carlo (MCMC) method.

3.3.3 Gibbs sampling

Gibbs sampling is a Markov chain Monte Carlo (MCMC) method that can be
used to generate an approximate sequence of samples from a joint distribution
p(x) = p(x1, x2, ..., xn

). Let x(i) denote the ith sample, then the general Gibbs
sampling procedure, starting at i = 0 with any x(0), is as follows, see [2]:

1. Begin with a vector x(i).

2. The next sample x(i+1) is obtain by sampling one component x
(i+1)
j

of

x(i+1) at the time from the conditional distribution p(x(i+1)
j

|x(i+1)
1 , ..., x

(i+1)
j�1 , x

(i)
j+1, ..., x

(i)
n

).
The sampling order can be stochastic or follow some predefined schedule.

3. Repeat step 1 and 2 k times, where k is the number of samples to generate.

The generated sequence consists of n-dimensional samples whose joint distribu-
tion converges to a stationary distribution when k !1, regardless of the initial
vector x(0), if the Markov chain is aperiodic and irreducible. For a Markov
random field it holds that the Markov chain defined by the Gibbs sampling
procedure (the so called Gibbs chain) is aperiodic and irreducible and that the
stationary distribution is the joint distribution p(x) = p(x1, x2, ..., xn

). The
mixing time, i.e. the time until the Markov chain is ”close” to the stationary
distribution, will depend on the model parameters.

For any subset of variables, the generated samples will asymptotically follow
the corresponding marginal distribution of p, and if some subset of variables
A are held fixed during the Gibbs sampling, the distribution of the remaining
variables B will asymptotically follow the conditional distribution p(B|A).
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Instead of sampling one component of x at a time in the Gibbs sampling pro-
cedure, it is possible to sample many components at the time, called a block,
from the corresponding conditional joint distribution. This is called block Gibbs
sampling. Since all variables in each layer of a restricted Boltzmann machine
are conditionally independent, one can sample all visible units given the hidden
units simultaneously from p(v|h) and vise versa. Each Gibbs sample can thus
be obtained in just two steps, see [9].

3.3.4 Contrastive Divergence

Obtaining samples from the stationary distribution of a Gibbs chain can require
many iterations. However, it has been shown that only one or a few iterations
can give good results when training a model if the Markov chain starts at a train-
ing example v(0), see [12]. This method is called k-step contrastive divergence
(CD-k), where k is the number of iterations.

Another approximation that is often done together with contrastive divergence
is to approximate the expectation in the second term of the gradient of the
log-likelihood 3.12 with a single sample, see [1]. A Python style pseudocode
implementation of this approximation together with the contrastive divergence
algorithm for a Gaussian restricted Boltzmann machine is given by

Algorithm 1: k-step contrastive divergence

Input: Training data D
Output: Approximations of �W , �a and �b

1 for v in D do
2 v(0)  v
3 for i = 0, ..., k do
4 sample h(i) ⇠ p(h|v(i))

5 sample v(i+1) ⇠ p(v|h(i))
6 end
7 for i = 1, 2, ..., n do
8 for j = 1, 2, ...,m do

9 �w
ij

 �w
ij

+ p(H
j

= 1|v(0))
v

(0)
i

�

2
i
� p(H

j

= 1|v(k))
v

(k)
i

�

2
i

10 end

11 end
12 for i = 1, 2, ..., n do

13 �a
i

 �a
i

+
v

(0)
i �a

(0)
i

�

2
i
� v

(k)
i �a

(k)
i

�

2
i

14 end
15 for j = 1, 2, ...,m do
16 �b

j

 �b
j

+ p(H
j

= 1|v(0))� p(H
j

= 1|v(k))
17 end

18 end
19 return �W , �a, �b

The code can often run faster by using vector operations instead of the loops.
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3.3.5 Annealed importance sampling

One way to monitor the progress of the unsupervised learning and to evaluate
the final model, is by calculating the log-likelihood on the training data or on
some unseen validation data. However, this requires calculating the partition
function, which is usually analytically intractable. One way to estimate the par-
tition function is by using annealed importance sampling, which is an extension
of simple importance sampling.

Simple importance sampling
Suppose we have two probability distributions with density functions p

A

(x) =
p

⇤
A(x)
ZA

and p
B

(x) = p

⇤
B(x)
ZB

, where p⇤ denotes the unnormalized probability den-
sity. If p

A

(x) 6= 0 whenever p
B

(x) 6= 0, the ratio of the partition functions can
be written as

Z
B

Z
A

=

R
p⇤
B

(x)dx

Z
A

=

Z
p⇤
B

(x)

p⇤
A

(x)
p
A

(x)dx = E
pA(x)[

p⇤
B

(x)

p⇤
A

(x)
]. (3.14)

If independent samples can be drawn from p
A

, an unbiased estimate of the ratio
can be obtained using the following Monte Carlo approximation:

Z
B

Z
A

⇡ 1

M

MX

i=1

p⇤
B

(x(i))

p⇤
A

(x(i))
:=

1

M

MX

i=1

w(i), (3.15)

where x(i) is sampled from p
A

and M is the number of samples. This method
is called simple importance sampling (SIS), and if the distribution p

A

is chosen
such that Z

A

can be calculated, it is possible to obtain an unbiased estimate of
Z
B

. However, if p
A

and p
B

are not similar enough, the estimate can have very
high variance, see [24].

Annealed importance sampling
Annealed importance sampling (AIS) is a method used to avoid the high variance
that can occur with simple importance sampling. Suppose we can define a
sequence of intermediate distributions p

A

= p0, p1, ..., pK = p
B

that satisfy the
following conditions:

• p
k

(x) 6= 0 whenever p
k+1(x) 6= 0, for k = 0, 1, ...,K � 1.

• The unnormalized probability p⇤
k

can be evaluated for k = 0, 1, ...,K.

• A sample x0 can be drawn given x using a Markov chain transition op-
erator T

k

(x0  x) that leaves p
k

invariant, i.e.
R
T
k

(x0  x)p
k

(x)dx =
p
k

(x0), for k = 1, 2, ...,K � 1.

• Samples, preferably independent, can be drawn from p
A

(x).

The sequence is usually constructed as

p⇤
k

(x) = p⇤
A

(x)1��kp⇤
B

(x)�k , (3.16)
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where k = 0, 1, ...,K and 0 = �0 < �1 < ... < �
K

= 1. The importance weight

w
(i)
AIS

is given by

w
(i)
AIS

=
p⇤1(x1)

p⇤0(x1)

p⇤2(x2)

p⇤1(x2)
...

p⇤
K

(x
K

)

p⇤
K�1(xK

)
, (3.17)

where x1 is sampled from p0 = p
A

and x
k

is sampled given x
k�1 using Tk�1(xk

 
x
k�1) for k = 2, 3, ...,K. The estimate of the ratio of the partition functions

can then be obtained using the same Monte Carlo approximation as in 3.15:

Z
B

Z
A

⇡ 1

M

MX

i=1

w
(i)
AIS

. (3.18)

The variance of the estimate is proportional to 1
MK

if K is su�ciently large, and
if the samples from p

A

are independent, the variance can be estimated using

Var(
1

M

MX

i=1

w
(i)
AIS

) ⇡ ŝ2

M
, (3.19)

where ŝ2 is the sample variance of the weights w(i)
AIS

, see [24].

AIS for Gaussian RBMs
An initial distribution p

A

(v) that has been proposed when estimating the parti-
tion function of a Gaussian RBM is the marginal of the intractable distribution
p
B

(v,h) of the Gaussian RBM but with the weight matrix W and the bias vec-
tor of the hidden units b set to zero. [17] Thus, the parameters of the intractable
distribution p

B

is given by ✓
B

= (W ,aB , b) and the parameters of the initial
distribution p

A

is given by ✓
A

= (0,aA,0). The two distributions also share the
same variances of the visible units �

i

, where i = 1, 2, ..., n.

Intermediate distributions based on the following energy functions have also
been proposed, see [17]:

E
�k(v,h) = �

k

E(v,h; ✓
B

) + (1� �
k

)E(v,h; ✓
A

) =

= �
k

(
X

i

(v
i

� aB
i

)2

2�2
i

�
X

j

b
j

h
j

�
X

i,j

v
i

�2
i

w
ij

h
j

)

+ (1� �
k

)
X

i

(v
i

� aA
i

)2

2�2
i

(3.20)

for k = 0, 1, ...,K.

The unnormalized intermediate probabilities are given by
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p⇤
�k
(v) = e

��
P

i

(vi�aB
i )2

2�2
i

�(1��)
P

i

(vi�aA
i )2

2�2
i

Y

j

(1 + e
�k(bj+

P
i

vi
�2
i
wij)

). (3.21)

The derivation is found in Appendix D.1. The transition operator is obtained
from

p
�k(Hj

= 1|v) = sig(�
k

(b
j

+
X

i

v
i

�2
i

w
ij

))

p
�k(vi|h) = N (v

i

|�
k

(aB
i

+
X

j

w
ij

h
j

) + (1� �
k

)aA
i

,�2
i

),
(3.22)

which are derived in the same way as the conditional distributions given by 3.8.
Sampling from 3.22 gives a sample v0 given v, and it is not necessary to compute
T
�k(v

0  v), see [23].

Samples from p
A

can be obtained by block Gibbs sampling. The samples will
not be independent, so the variance estimate 3.19 can not be used.

The partition function of the tractable distribution, Z
A

, is given by

Z
A

= 2m
Y

i

q
2⇡�2

i

. (3.23)

The derivation is found in Appendix D.2. Finally, the partition function of
the intractable distribution, Z

B

, can be estimated using annealed importance
sampling.

3.4 Principal component analysis

Principal component analysis (PCA) is an orthogonal transformation of a data
set of possibly correlated variables into a data set of uncorrelated variables,
called principal components. The transformation is defined such that the first
principal component accounts for the largest possible variance in the data, the
second component accounts for the largest possible variance given that it is
orthogonal to the first component and so forth. The number of principal com-
ponents is equal to the smallest of the number of original variables and the
number of data points minus one. If only a subset of the principal components
are used to represent the data, PCA can be used for dimensionality reduction,
data compression, feature extraction and data visualization, see [22].

Let the matrixX 2 RN⇥n represent a data set, where each row is an observation
x
i

2 Rn and each column is a variable, and let the PCA transformation of X
be denoted as Z 2 RN⇥n, where each row is an observation z

i

2 Rn and each
column is a principal component. The PCA transformation can be obtained by

Z = XU , (3.24)
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where U 2 Rn⇥n is the orthogonal transformation matrix with the new basis
vectors, called principal component axes, as columns.

One way to find the new basis vectors is by finding the eigenvalues �1,�2, ...,�n
and the corresponding eigenvectors u1,u2, ...,un

of the sample covariance ma-
trix S 2 Rn⇥n of the data X. The eigenvectors will be the new basis vectors
and the eigenvalues will equal the variance of the data in the corresponding
direction.

To avoid that variables with large variance dominates the first principal com-
ponents, each variable can be scaled to have unit variance, see [16]. This corre-
sponds to calculating the eigenvalues and eigenvectors on the correlation matrix
instead of the covariance matrix. Let Ũ denote the matrix with the eigenvectors
of the correlation matrix as column and let L̃ denote the diagonal matrix with
the corresponding eigenvalues on the diagonal.

PCA can be used to obtain a data set with zero mean and unit covariance,
which is called whitening or sphering. The whitened data can be obtained as

z̃
i

= L̃�1ŨT (x
i

� x̄) (3.25)

for i = 1, 2, ..., N , where x̄ is the sample mean given by x̄ = 1
N

P
N

i=1 xi

, see [2].

4 Method

This sections starts with information about the raw data, followed by a descrip-
tion of how the raw data was preprocessed and structured to fit the modeling
problem. Then follows a description of the tested architectures, how the train-
ing and evaluation were done and which hyperparameters that were used. Then
is the ensemble described, followed by the benchmark models. The section ends
with a description of how the ability to make one-day-ahead forecasts and gen-
erate long term scenarios were evaluated.

4.1 Data

The raw data that were used consisted of daily quotes of the yield to maturity
of Swedish government bonds and Treasury bills. The data covered the period
1993-01-01 to 2017-09-11, which corresponds to 6201 observations, and the fol-
lowing time to maturities were included: 1M, 3M, 6M, 2Y, 5Y, 7Y and 10Y. The
data was provided by the central bank of Sweden, Sveriges Riksbank. Missing
values were linearly interpolated. The raw data is plotted in Figure 1.
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Figure 1: The raw yield data used in this thesis.

4.1.1 Data preprocessing

The raw data was randomly shu✏ed over the time dimension and divided into
a training set, a validation set and a test set. The training set was used for
training, the validation set was used for model selection, the test set was used
to evaluate the selected models and the shu✏ing was done to avoid di↵erences
between the sets. The training set, the validation set and test set contained
4000, 1100 and 1100 observations respectively.

Three di↵erent preprocessings were compared in the thesis: the standardized
raw data, a standardized PCA representation of the standardized raw data with
all principal components included, and a standardized PCA approximation of
the standardized raw data with a subset of the principal components included.

Let the yield to maturity at time t be denoted as y
t

2 R7 and the di↵erence
between the yield to maturity at time t + 1 and the yield to maturity at time
t be denoted as x

t

= y
t+1 � y

t

2 R7, where t = 1, 2, ..., 6200. Let x̂
t

and ŷ
t

denote the standardized data, with components given by

x̂
i

=
x
i

� x̄
i

sx
i

ŷ
i

=
y
i

� ȳ
i

sy
i

,
(4.1)

where i is the component index, x̄
i

and ȳ
i

are sample means of the training set
and sx

i

and sy
i

are sample standard deviations of the training set.

The components of ŷ
t

may be correlated, as well as the components of x̂
t

.
By using PCA, ŷ

t

and x̂
t

can be transformed without loss of information into
uncorrelated principal components, denoted as zy

t

and zx

t

respectively. This
transformation might be useful since a limitation of the restricted Boltzmann
machine is that the visible units are conditionally independent given the hidden
states.

By discarding some of the principal components, dimensionality reduction is ob-
tained. The table below shows how much of the variance that was cumulatively
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explained by di↵erent number of principal components.

Component: 1st 2nd 3rd 4th 5th 6th 7th
Level ŷ: 0.9749 0.9974 0.9994 0.9997 0.9999 0.9999 1
Return x̂: 0.6135 0.8216 0.9056 0.9480 0.9832 0.9933 1

Table 1: Cumulative percentage of the total variance explained by the principal
components.

In the literature, it is common to use the first three principal components to
explain the changes of the yield curve. The first component tend to explain
parallel shifts, the second component tend to explain rotations and the third
component tend to explain changes in the curvature, see [21]. Thus, let z̃x

t

denote the first three principal components of x̂
t

. For simplicity, the first three
components were also used to explain the level of the yield curve, so let z̃y

t

denote the first three principal components of ŷ
t

.

The three input sets, before standardization, that were compared in this study
are given by

v1
t

= (y
t

,x
t

) 2 R14

v2
t

= (zy

t

, zx

t

) 2 R14

v3
t

= (z̃y

t

, z̃x

t

) 2 R6.

(4.2)

Let v̂1
t

, v̂2
t

and v̂3
t

denote the standardized input sets, with components given
by

v̂
i

=
v
i

� v̄
i

s
i

, (4.3)

where i is the component index, v̄
i

is the sample mean of the training set and s
i

is the sample standard deviation of the training set. Thus, each component of
the training data had zero mean and unit variance, while each component of the
validation and test data may have had a slightly di↵erent mean and standard
deviation.

4.2 Models and training

The models used in this thesis were restricted Boltzmann machines with Gaus-
sian visible units and binary hidden units. The number of visible units equaled
the dimension of the input vector, i.e. 14 or 6 depending on the preprocessing,
and the number of hidden units was a hyperparameter that had to be tuned.
The unstandardized input vectors are given by 4.2.

Since no previous studies that were using a similar model on a similar data
set were found, a large span of hidden units was investigated. The following
architectures, i.e. number of hidden units, were compared:
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M = (4, 8, 16, 32, 64, 128, 256). (4.4)

Ideally, the remaining hyperparameters would also have been tuned, but since
the training and evaluation of the models were too time consuming, the remain-
ing hyperparameters were set to values that were mentioned in the literature
and that performed reasonably well during initial testing. The initial learning
rate was set to 0.01 and decreased by a constant factor each epoch down to
0.001. The batch size was set to 100 and the number of Gibbs step in the con-
trastive divergence algorithm was set to 1. The initial weights were sampled
from a Gaussian distribution with zero mean and a variance of 0.01 and the
biases were initialized to zero, as mentioned in [10].

There is no simple and universal way to evaluate unsupervised generative mod-
els. A popular measure is the likelihood, but it cannot be used to compare the
di↵erent preprocessings of the data and it is usually analytically intractable for
restricted Boltzmann machines. It can be estimated using annealed importance
sampling, but this method sometimes fails to estimate the true likelihood, see
[25]. A measure that fits the objectives of this thesis is the ability to reconstruct
the returns given the levels, measured as a mean squared error. This type of
reconstruction will also be used to make one-day-ahead forecasts, either with
or without sampling. In the sequel will the phrases return reconstruction and
one-day-ahead forecast thus be used interchangeably, and the phrase reconstruc-
tion error will refer to the mean squared error of the reconstructed normalized
returns. Both the log-likelihood and the return reconstruction were evaluated
during training.

The training was evaluated every 100th epoch by first calculating the log-
likelihood on the training and validation set using annealed importance sampling
with 100 samples, 1000 intermediate distributions with 100 evenly spaced betas
from 0 to 0.5, 400 evenly spaced betas from 0.5 to 0.9 and 500 evenly spaced
betas from 0.9 to 1, which are the same proportions as in [24]. A burn in period
of length 100 was used before sampling from the initial distribution.

The ability to reconstruct the returns x
t

given the levels y
t

was also evaluated
every 100th epoch. The samples of x

t

were obtained by clamping the levels
and alternately updating the hidden and visible units without sampling until
convergence. The initial returns were set to random normal values with mean 0
and standard deviation 1. The mean squared error between the reconstructed
normalized returns and the true normalized returns was then calculated.

The number of training epochs was set to 20000 and no early stopping was used.
Each evaluated model were saved and the optimal training lengths were chosen
afterwards based on either the log-likelihood or the reconstruction error on the
validation set.

4.2.1 Ensemble

To investigate and potentially limit the e↵ects of randomness that originate from
the weight initialization and the training, an ensemble of 10 models were trained.
Ideally, this would have been done for all tested architectures, but it was not
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possible since the training and evaluation were too time consuming. Instead,
it was done for the architecture that performed best with respect to return
reconstruction on the validation set. The models in the ensemble were trained
for 10000 epochs and evaluated every 100th epoch. Each evaluated model were
saved and the optimal training lengths were chosen afterwards based on the
reconstruction errors on the validation set.

4.2.2 Benchmarks

The results of the one-day-ahead forecasts and the scenario generation, described
in Section 4.3.1 and 4.3.2, were compared to some simple benchmark models.
Two benchmark models were used for the one-day-ahead forecasts: one that
assumed a random walk and thus forecasted a zero change of the standardized
returns and one vector autoregressive model of order 1, fitted to the standard-
ized returns of the training set. Assuming a random walk on the standardized
data corresponds to assuming a random walk with the trend of the training set
on the non-standardized data. For the scenario generation, three probabilistic
benchmark models were used. One Gaussian random walk with zero mean and
the variance structure of the training set but with no covariance, one Gaussian
random walk with zero mean and the full covariance structure of the training
set and one PCA model based on the standardized training set with Gaussian
principal components having the same mean and variance as the principal com-
ponents of the standardized training set.

4.3 Evaluations

4.3.1 One-day-ahead forecasts

The one-day-ahead forecasts were obtained by reconstructing the returns given
the levels without sampling, as described in Section 4.2. To evaluate the fore-
casts, the mean squared error between the forecasted normalized returns and
the true normalized returns was calculated.

The one-day-ahead forecast error was calculated for each preprocessing and each
architecture on both the validation and test set. The training length for each
model were chosen based on the reconstruction error on the validation set.

The one-day-ahead forecast error was also calculated for each model in the
ensemble on both the validation and test set. Then were the mean and variance
estimated.

These results were then compared to the results from the benchmark models.

4.3.2 Long term scenario generation

The long term scenarios were generated by iterating the one-day-ahead forecasts,
but with sampling. Each sample of returns x

t

were obtained by clamping the
current levels and alternately updating the hidden and visible units, each with
random sampling, 10 times. The initial returns for each time step were set to
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random normal values with mean 0 and standard deviation 1. The levels of
the next time step were obtained by adding the sampled returns to the current
levels, i.e. y

t+1 = y
t

+ x
t

. From the sampled returns were the mean values of
the training set subtracted to avoid catching the negative trend of the yields in
the raw data, see Figure 1. It is not obvious how to handle the trend, but it is
more of an economic topic that is outside the scope of this thesis. The length of
the generated scenarios were set to 10000 days, starting at the last observation
in the unshu✏ed data set, i.e. the yield curve at 2017-09-08.

For each preprocessing were scenarios generated from the models with the lowest
reconstruction error and the highest log-likelihood on the validation set during
training. From each model were 100 scenarios generated and the mean of these
scenarios calculated.

For each model in the ensemble were 10 scenarios generated, i.e. a total of
100 scenarios. From these scenarios were the mean, 5th percentile and 95th
percentile calculated.

The generated scenarios were then visually compared to the scenarios generated
from the benchmark models.

The ability to make one year ahead forecasts was also evaluated in a more
formal way, by estimating the mean squared forecast error. For each model
in the ensemble were 10 scenarios of length 250 days, approximately 1 year,
generated, i.e. a total of 100 scenarios. The mean of these scenarios were used
to forecast the term structure. The trends of the generated scenarios were not
removed, since it would make the forecasts worse. This procedure was used to
forecast the last 750 yields of the unshu✏ed data, and then the mean squared
error between the forecasted yields and the true yields was calculated. Since
the raw data was shu✏ed before it was divided into training, validation and test
sets, this is not a true out-of-sample forecast. Some of the values to forecast
will be in the training and validation set.

The mean squared forecast errors were compared to the benchmark models.

5 Results

This section begins with a presentation of the results regarding the one-day-
ahead forecasts, followed by the results regarding the long term scenario gener-
ation.

5.1 One-day-ahead forecasts

Model comparison
The purpose of this part was to evaluate a wide range of architectures and the
e↵ects of PCA as data preprocessing. The results in Table 2 were obtained
from models trained on raw data and show the mean squared error (MSE) of
normalized one-day-ahead returns.
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Hidden MSE valid MSE test Epochs
4 1.2962 1.3114 19300
8 1.2973 1.3833 6700
16 1.3004 1.3065 3500
32 1.3023 1.3099 6400
64 1.3040 1.3101 9400
128 1.3040 1.3083 9500
256 1.3035 1.3071 18900

Table 2: MSE of normalized one-day-ahead returns from models trained on raw
data.

The results in Table 3 were obtained from models trained on PCA transformed
data using all PCA components.

Hidden MSE valid MSE test Epochs
4 1.3029 1.3031 1400
8 1.2976 1.3036 1400
16 1.2962 1.3002 1700
32 1.2967 1.3026 2300
64 1.2965 1.2985 3400
128 1.2968 1.2968 3000
256 1.2952 1.3044 6300

Table 3: MSE of normalized one-day-ahead returns from models trained on
PCA transformed data with all components included.

The results in Table 4 were obtained from models trained on PCA transformed
data using 3 PCA components.

Hidden MSE valid MSE test Epochs
4 1.2994 1.3089 1400
8 1.2990 1.3055 2400
16 1.2989 1.3043 2400
32 1.2987 1.3054 4400
64 1.2983 1.3081 8900
128 1.2985 1.3060 14400
256 1.2984 1.3088 18600

Table 4: MSE of normalized one-day-ahead returns from models trained on
PCA transformed data with 3 components included.

The MSE was higher on the test set than on the validation set for almost all
models and data sets. The di↵erences in MSE between the three data sets were
small, but PCA transformed data performed in general slightly better than raw
data, and using all PCA components performed slightly better than using only
3 components, at least on the validation set. There was no clear and general
relation between the number of hidden nodes and the MSE.
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Ensemble
The purpose of the ensemble was to get a rough estimate of the standard devi-
ation of the one-day-ahead return MSE. The architecture that corresponded to
the lowest one-day-ahead return MSE on the validation set, i.e. the architecture
with 256 hidden nodes trained on PCA transformed data with all components
included, was chosen to create the ensemble of 10 models. The mean and stan-
dard deviation of the one-day-ahead return MSE for the models in the ensemble
are presented in Table 5.

MSE valid MSE test Epochs
Mean 1.2956 1.3008 5570
SD 0.000619 0.002853 750

Table 5: Mean and standard deviation of the one-day-ahead return MSE for the
models in the ensemble.

Benchmarks
The purpose of the benchmark models were to compare the one-day-ahead fore-
cast ability of the Gaussian restricted Boltzmann machine to some simple mod-
els. The results of the benchmarks models, described in section 4.2.2, are shown
in Table 6.

Model MSE train MSE valid MSE test
Random walk 1.0 1.3050 1.3022
VAR(1) 1.0095 1.3194 1.3160

Table 6: MSE of normalized one-day-ahead returns for the benchmark models.

5.2 Long term scenario generation

In this section are the results from the generation of long term scenarios pre-
sented.

Model selection
The purpose of this part is to compare log-likelihood and return reconstruction
as measures of ability to generate long term scenarios. The figures show the
mean of 100 generated scenarios, based on the best performing models with re-
spect to log-likelihood and reconstruction error from Section 5.1. The scenarios
in Figure 2 are based on models trained on raw data.
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Figure 2: Mean of 100 generated scenarios based on the best performing models
with respect to log-likelihood and reconstruction error. The models are trained
on raw data.

Figure 3 show scenarios based on models trained on PCA transformed data with
all components included.

Figure 3: Mean of 100 generated scenarios based on the best performing models
with respect to log-likelihood and reconstruction error. The models are trained
on PCA transformed data with all components included.

Figure 4 show scenarios based on models trained on PCA transformed data with
3 components included.
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Figure 4: Mean of 100 generated scenarios based on the best performing models
with respect to log-likelihood and reconstruction error. The models are trained
on PCA transformed data with 3 components included.

The generated scenarios should ideally be drawn from a probability distribution
similar to the unknown probability distribution of the raw data, but without
the downward trend. Therefore, the generated scenarios should have a visual
resemblance to the raw data, shown in Figure 1, but without the trend. But
note that the plots above show mean values of 100 samples and not a single
sample.

The generated yields from models selected based on log-likelihood tended to
diverge and drift to extreme values, which was also the case for the yields
generated from the model selected based on reconstruction error and trained on
raw data. The yields generated from the models trained on PCA transformed
data and selected based on reconstruction error seemed to hold together well and
had mean values that resemble the raw data. However, for the yields generated
from the model trained on PCA transformed data with all components included,
the ordering of the yields seemed reversed.

Ensemble
The purpose of the ensemble was to eliminate potential e↵ects of randomness in
the model initialization and model training. The models in this ensemble were
the same as in Section 5.1. In Figure 5 are the mean, 5th percentile and 95th
percentile of the generated scenarios from the models in the ensemble plotted.
From each model in the ensemble were 10 scenarios of length 10000 generated,
i.e. a total of 100 scenarios.
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Figure 5: Mean, 5th percentile and 95th percentile of 100 generated scenarios
from 10 di↵erent models with 256 hidden units, trained on PCA transformed
data with all components included.

In Figure 6 are the means, 5th percentiles and 95th percentiles of the generated
yield curves at 1 year, 10 years and 35 years ahead plotted. The curves are
based on the same data as Figure 5

Figure 6: Mean, 5th percentile and 95th percentile of 100 generated yield curves
1 year, 10 years and 35 years ahead.

Benchmarks
The purpose of the benchmark models were to compare the generated scenarios
of the Gaussian restricted Boltzmann machine to some simple models. In the
figures below are the means, 5th percentiles and 95th percentiles of 100 gener-
ated scenarios from the benchmark models plotted. Figure 7 show the results
from the uncorrelated Gaussian random walk.
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Figure 7: Mean, 5th percentile and 95th percentile of 100 generated scenarios
based on the Gaussian random walk.

In Figure 6 are the means, 5th percentiles and 95th percentiles of the generated
yield curves at 1 year, 10 years and 35 years ahead plotted. The curves are
based on the same data as Figure 7

Figure 8: Mean, 5th percentile and 95th percentile of 100 generated yield curves
1 year, 10 years and 35 years ahead, based on the Gaussian random walk.

Figure 9 and 10 show the results from the correlated Gaussian random walk.
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Figure 9: Mean, 5th percentile and 95th percentile of 100 generated scenarios
based on the correlated Gaussian random walk.

Figure 10: Mean, 5th percentile and 95th percentile of 100 generated yield
curves 1 year, 10 years and 35 years ahead, based on the correlated Gaussian
random walk.

Figure 11 and 12 show the results from the PCA based benchmark described in
section 4.2.2.
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Figure 11: Mean, 5th percentile and 95th percentile of 100 generated scenarios
from the PCA based benchmark.

Figure 12: Mean, 5th percentile and 95th percentile of 100 generated yield
curves 1 year, 10 years and 35 years ahead from the PCA based benchmark.

Numeric comparison
The purpose of this part was to evaluate the ability to generate scenarios in a
more rigorous way. Table 7 shows the one year ahead mean squared forecast
errors for the di↵erent maturities. It is not a true out-of-sample forecast since
most of the forecasted values were used during training, as described in Section
4.3.2.
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Maturity GRBM RW Cov PCA
1M 0.0439 0.1114 0.1207 0.1231
3M 0.0365 0.0918 0.0957 0.0976
6M 0.0446 0.0893 0.0920 0.0930
2Y 0.1075 0.1539 0.1618 0.1616
5Y 0.3029 0.3214 0.3325 0.3281
7Y 0.3377 0.3649 0.3760 0.3704
10Y 0.3896 0.3915 0.4021 0.3974

Table 7: MSE between the forecasted level of the term structure and the true
level of the term structure for the Gaussian restricted Boltzmann machine and
the benchmark models.

6 Discussion

In this section are the results obtained in Section 5 discussed. It begins with a
discussion about the results regarding the return reconstructions/one-day-ahead
forecasts, followed by a discussion regarding the the scenario generation. Then
follows a discussion about PCA as data preprocessing.

6.1 One-day-ahead forecasts

The results from all tested architectures were fairly similar. The ensemble of the
best performing architecture performed slightly better than the vector autore-
gressive benchmark, but close to the random walk benchmark. These results are
slightly better than for the classical no arbitrage a�ne models tested in the pa-
per by Velásquez-Giraldo and Restrepo-Tobón and the Nelson-Siegel extensions
tested in the paper by Luo, Han and Zhang, which were slightly outperformed
by the random walk benchmark, see [27] and [18] respectively.

The reason why the models cannot significantly outperform the random walk
benchmark might be explained by the e�cient market hypothesis, which states
that financial markets are e�cient and that the current price on a financial asset
reflects all available information. It should thus be impossible to consistently
outperform the market, see [19]. There exist di↵erent formulations of the e�-
cient market hypothesis that di↵er regarding which information is reflected in
the prices of financial assets, but predicting future prices by analyzing prices
from the past are considered impossible. In the light of this, the results are not
surprising.

However, there are a lot of researchers and practitioners that have disputed the
e�cient market hypothesis, for example [19]. One rationale behind the e�cient
market hypothesis is that ine�ciencies which are found will quickly be exploited
and thus disappear. The ability to use machine learning to model complex
nonlinear relations is a fairly new thing, so there is reason to believe that it can
be used to find formerly unknown ine�ciencies. However, this study could not
find any ine�ciencies by using Gaussian restricted Boltzmann machines that
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could be used to predict the yields of tomorrow significantly better than the
random walk benchmark.

The di↵erences in performance between the architectures were fairly small and
the standard deviations, based on the models in the ensemble, were fairly large
compared to these di↵erences, which makes it hard to draw any conclusions
regarding how the number of hidden units a↵ect performance. Since the di↵er-
ences were so small regarding one-day-ahead forecasts, it would be interesting
to investigate if the di↵erences would be as small for long term scenario gen-
eration. If so, there is no reason to use large architectures since the smaller
architectures are less time consuming to train and evaluate. This is something
for future work to look at.

The lower forecast error on the validation set compared to the test set was
expected, since the models were chosen based on performance on the validation
set.

A fairly large number of hidden units were compared, but a limitation of this
study is that the remaining hyperparameters were not tuned rigorously, even
though it is unlikely that it would have changed the results substantially. This
is something for future research to look into, as well as if there might be per-
formance di↵erences between the maturities.

6.2 Long term scenario generation

Even if the one day ahead returns could not be predicted better than assuming
a random walk, there may still be important structures in the data that can
be modeled to generate plausible long term scenarios. For example if the yield
curve is particularly steep, it can be expected to flatten out, but exactly how
the flattening proceeds with respect to time and size of the daily changes can
be hard to predict.

The ability to generate scenarios showed promising results. A few conclusions
can be drawn by comparing the generated scenarios shown in Figure 2, 3 and 4.
The models selected based on log-likelihood performed considerably worse than
the models selected based on reconstruction error. The yields from the models
selected based on log-likelihood diverge from each other and drift to extreme
values in a way that is not consistent with the raw data plotted in Figure 1. By
looking at the number of hidden nodes and the number of training epochs for
each model, it is apparent that the log-likelihood and the reconstruction error
favour di↵erent models, where the latter perform better with regards to long
term scenario generation. The reasons for this is something to investigate in
future work.

Another conclusion is that the models trained on PCA transformed data per-
formed better than the models trained on raw data, given that reconstruction
error was used for model selection. The yields generated from the model trained
on raw data diverged from each other in a way that is not consistent with the
raw data in Figure 1. This di�culty to model dependencies between the visible
units has been discussed in previous research, and might be due to the diagonal
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covariance matrix of the restricted Boltzamnn machine. The PCA transforma-
tion seems to be one way to deal with this di�culty.

One unexpected thing with the scenario generated from the model trained on
PCA transformed data with all components included, shown in the top plot of
Figure 3, is that the ordering of the yields seems inverted. The reason for this
was not investigated further, but a potential explanation is that it is caused
by randomness in the weight initialization or in the training process, since the
results of the ensemble look better. This is something that has to be investigated
in future work.

The scenario generated from the ensemble, shown in Figure 5, has many prop-
erties that agree with the raw data in Figure 1. The ordering of the yields seems
to agree, at least for the mean and the 95th percentile. The relations between
the yields of di↵erent maturities do also seem to agree to a large extent, where
the 1M and 3M and 6M stick closely together, as well as the 5Y, 7Y and 10Y,
with the 2Y somewhere in between. Another desired property is that the yields
tend to become somewhat stationary after some time and that the mean level
seems to agree fairly well with the raw data shown in Figure 1. The ensemble
outperform all benchmark models with respect to these properties.

One weakness with the machine learning approach used in this paper, com-
pared to more classical approaches, is that the model is kind of a black box.
The dynamics of the model is not as apparent as for the classical models, which
usually can be hand crafted to obtain certain properties. In the classical ap-
proach can you for example obtain mean reversion and non-negative yields, but
this is harder to explicitly obtain in the machine learning approach.

The results of the one-year forecast errors given in Table 7 do also show promis-
ing results. The errors of the ensemble were lower than the errors of all bench-
mark models for all maturities, especially the shorter ones. However, it should
be noted that it is partly an in-sample forecast, as described in Section 4.3.2.
The results are better than for the classical a�ne models evaluated by for exam-
ple Du↵ee in [7], which were outperformed by the random walk benchmark both
in-sample and out-of-sample. The studies that were found which used more ad-
vanced models did only evaluate the forecast ability out-of-sample, which makes
a comparison unfair. The forecast ability is probably also be dependent on the
data set used, for example with respect to country and period of time, which
makes comparisons hard. To get a fair comparison between models, it is best to
compare the results on the same data set. This is something for future research
to look at.

6.3 Preprocessing

The results indicate that modeling PCA preprocessed data is to prefer both
regarding one-day-ahead forecasting and long term scenario generation. The
most considerable advantage of modeling PCA transformed data is that the
yields of the generated scenarios show correlations which are more in line with
the raw data in Figure 1. This might seem obvious considering the diagonal
covariance structure of the restricted Boltzmann machine, but it is not a very
common transformation in the literature.
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Regarding how many components to include, there is not enough evidence in
this thesis to draw any conclusions. The number of components to include can
probably be seen as a hyperparameter that should be tuned.

7 Conclusion

One objective of this thesis was to investigate if Gaussian restricted Boltzmann
machines can be used to forecast the term structure of interest rates one day
ahead. The results suggest that the forecast ability one day ahead is similar
to a benchmark model that assumes a random walk and slightly better than
a benchmark based on a vector autoregression model of order 1. The results
hold both in-sample and out-of-sample and outperform many classical a�ne
models tested in previous work, which tend to perform worse than a random
walk benchmark both in-sample and out-of-sample.

Another objective of this thesis was to investigate if the one-day-ahead forecasts
can be iterated to generate plausible long term scenarios. These results are
promising. The generated scenarios have many desirable properties, such as
correct ordering of the yields and mutual relations that resemble the original
yield data. The generated scenarios do also seem somewhat stationary after
some time, with mean values that agree fairly well with the original yield data.
With regard to these properties do the Gaussian restricted Boltzmann machine
outperform the tested benchmark models.

The ability to make one-year-ahead forecasts do also show good results, mea-
sured as mean squared forecast error on semi-out-of-sample data. The results
outperform the tested benchmark models, especially for shorter maturities. The
results do also outperform many classical a�ne models tested in previous work,
which fail to beat the random walk benchmark both in-sample and out-of sam-
ple. How the results compare to more advanced models out-of-sample is some-
thing to investigate in future work.

The last objective was to investigate the e↵ects of PCA as data preprocessing.
The results indicate that modeling PCA preprocessed data is to prefer regarding
both one-day-ahead forecasting and long term scenario generation. For the
scenario generation do PCA preprocessing seem like a necessity to obtain good
results.

7.1 Future work

This thesis lay the groundwork for modeling the term structure of interest rates
with machine learning in general and Gaussian restricted Boltzmann machines
in particular. The results are promising and this thesis has just scratched the
surface of the possibilities. Some ideas for future work are to:

• Do a more extensive parameter optimization

• Investigate the dynamics of the generated scenarios
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• Compare the Gaussian restricted Boltzmann machine with other term
structure models on the same data set

• Try deep architectures, such as a deep Boltzmann machines, or other
generative models
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A Ensemble results

In Table 8 are the MSE of the return reconstruction for the models in the
ensemble presented.

Ensemble MSE valid MSE test Epochs
1 1.2963 1.3003 5500
2 1.2960 1.3032 5500
3 1.2958 1.2961 5500
4 1.2966 1.2972 3900
5 1.2951 1.3056 7200
6 1.2949 1.3024 5800
7 1.2945 1.3032 5600
8 1.2957 1.2982 5300
9 1.2951 1.3000 5700
10 1.2957 1.3018 5700
Mean 1.2956 1.3008 5570
SD 0.000619 0.002853 750

Table 8: MSE between inferred normalized returns and true normalized returns
for the models in the ensemble.
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B Conditional probability distributions

The joint probability distribution of a Gaussian-Bernoulli restricted Boltzmann
machine is obtained by plugging in the energy function 3.6 into the expression
for the Gibbs distribution 3.4. [20]

p(v|h) = p(v,h)R
v

p(v,h)dv
=

=
e
�

P
i

(vi�ai)
2

2�2
i

+
P

j bjhj+
P

i,j
vi
�2
i
wijhj

R
v

e
�

P
i

(vi�ai)
2

2�2
i

+
P

j bjhj+
P

i,j
vi
�2
i
wijhj

dv

=

=

Q
i

e
� (vi�ai)

2

2�2
i

+
P

j
vi
�2
i
wijhj

R
v

Q
i

e
� (vi�ai)

2

2�2
i

+
P

j
vi
�2
i
wijhj

dv

=

=
Y

i

e
� (vi�ai)

2

2�2
i

+
P

j
vi
�2
i
wijhj

R
vi
e
� (vi�ai)

2

2�2
i

+
P

j
vi
�2
i
wijhj

dv
i

=

=
Y

i

e
�(vi�ai�

P
j wijhj)

2+(
P

j wijhj)
2+2

P
j aiwijhj

2�2
i

R
vi
e

�(vi�ai�
P

j wijhj)
2+(

P
j wijhj)

2+2
P

j aiwijhj

2�2
i dv

i

=

=
Y

i

e
�(vi�ai�

P
j wijhj)

2

2�2
i

R
vi
e

�(vi�ai�
P

j wijhj)
2

2�2
i dv

i

=

=
Y

i

N (v
i

|a
i

+
X

j

w
ij

h
j

,�2
i

)

(B.1)

The integral
R
v

dv for v = (v1, v2, ..., vn) refers to
R
v1

R
v2

...
R
vn

dv1dv2...dvn. The
following calculation is used to complete the square:

� (v
i

� a
i

)2

2�2
i

+
X

j

v
i

�2
i

w
ij

h
j

=

=
�v2

i

� a2
i

+ 2v
i

a
i

+ 2
P

j

v
i

w
ij

h
j

2�2
i

=

=
�v2

i

� a2
i

+ 2v
i

a
i

+ 2
P

j

v
i

w
ij

h
j

+ (
P

j

w
ij

h
j

)2 � (
P

j

w
ij

h
j

)2 + 2
P

j

a
i

w
ij

h
j

� 2
P

j

a
i

w
ij

h
j

2�2
i

=

=
�(v

i

� a
i

�
P

j

w
ij

h
j

)2 + (
P

j

w
ij

h
j

)2 + 2
P

j

a
i

w
ij

h
j

2�2
i

.

(B.2)

36



p(h|v) = p(v,h)P
h

p(v,h)
=

=
e
�

P
i

(vi�ai)
2

2�2
i

+
P

j bjhj+
P

i,j
vi
�2
i
wijhj

P
h

e
�

P
i

(vi�ai)
2

2�2
i

+
P

j bjhj+
P

i,j
vi
�2
i
wijhj

=

=

Q
j

e
(bj+

P
i

vi
�2
i
wij)hj

P
h

Q
j

e
(bj+

P
i

vi
�2
i
wij)hj

=

=
Y

j

e
(bj+

P
i

vi
�2
i
wij)hj

P
hj

e
(bj+

P
i

vi
�2
i
wij)hj

=

=
Y

j

e
(bj+

P
i

vi
�2
i
wij)hj

1 + e
bj+

P
i

vi
�2
i
wij

(B.3)

The sum
P

h

for h = (h1, h2, ..., hm

) refers to
P

h1

P
h2

...
P

hm
. In the last step

the sum over h
j

2 {0, 1} is evaluated.

p(H
j

= 1|v) = e
bj+

P
i

vi
�2
i
wij

1 + e
bj+

P
i

vi
�2
i
wij

=

=
1

1 + e
�(bj+

P
i

vi
�2
i
wij)

=

= sig(b
j

+
X

i

v
i

�2
i

w
ij

)

(B.4)

37



C Gradient of log-likelihood

For a Gaussian-Bernoulli restricted Boltzmann machine can the gradient of the
log-likelihood of a single observation be expressed as [9]
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In the last step the following relations are used:
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Component W
The first term of the derivative of the log-likelihood C.1 with respect to the
components of W can be rewritten as [20]
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The factorization is possible since the hidden units are independent of each other
given the values of the visible units, as stated in 3.7. h�j

refers to the vector
h without component j. In the last step the sum over h

j

is evaluated and it is
noted that

P
h�j

p(h�j

|v) = 1.

The second term of the derivative of the log-likelihood C.1 with respect to the
components of W can be rewritten as
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(C.5)

The derivative of the log-likelihood C.1 with respect to w
ij

then becomes:

@ lnL(✓|v)
@w

ij

= p(H
j

= 1|v) vi
�2
i

�
Z

v

p(v)p(H
j

= 1|v) vi
�2
i

dv. (C.6)

Component a
The first term of the derivative of the log-likelihood C.1 with respect to the
components of a can be rewritten as

X

h
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X
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(C.7)

The second term of the derivative of the log-likelihood C.1 with respect to the
components of a can be rewritten as
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i

dv = �
Z

v

X

h

p(h|v)p(v)vi � a
i

�2
i

dv =

= �
Z

v

p(v)
v
i

� a
i

�2
i

X

h

p(h|v)dv =

= �
Z

v

p(v)
v
i

� a
i

�2
i

dv.

(C.8)

The derivative of the log-likelihood C.1 with respect to a
i

then becomes:

@ lnL(✓|v)
@a

i

=
v
i

� a
i

�2
i

�
Z

v

p(v)
v
i

� a
i

�2
i

dv. (C.9)
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Component b
The first term of the derivative of the log-likelihood C.1 with respect to the
components of b can be rewritten as:

X
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(C.10)

The second term of the derivative of the log-likelihood C.1 with respect to the
components of b can be rewritten as
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(C.11)

The derivative of the log-likelihood C.1 with respect to b
j

then becomes:

@ lnL(✓|v)
@b

j

= p(H
j

= 1|v)�
Z

v

p(v)p(H
j

= 1|v)dv. (C.12)
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D Derivations for AIS

D.1 Intermediate probabilities

The unnormalized intermediate probabilities p⇤
�k
(v) for k = 0, 1, ...,K are de-

rived by plugging in the energy function 3.20 into the expression for the Gibbs
distribution 3.4, and then marginalizing over h:
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(D.1)

D.2 Partition function of initial distribution

The partition function Z
A

of the initial distribution p
A

is obtained by marginal-
izing the unnormalized distribution p⇤

A

over all variables.
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(D.2)
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E Free energy

The free energy is given by:

F (v) = � log
X

h

e�E(v,h) =

= � log
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log 1 + ebi+vWi

(E.1)

I have changed from vector to index notation. Since the product factorizes in
factors that only depend on i, the sum and product can change place. In the
last equality I have used simply calculated the sum, where h

i

can take values 0
or 1.
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