EXAMINATION IN SF2980 RISK MANAGEMENT, 2014-01-14, 14:00-19:00.

Examiner: Henrik Hult, tel. 790 6911, e-mail: hult@kth.se
Allowed technical aids: Everything except computers and communication devices. All books, notes, and similar are allowed. A calculator is necessary.

Any notation introduced must be explained and defined. Assumptions must be clearly stated. Arguments and computations must be detailed so that they are easy to follow.

Good luck!

Problem 1

$X=V_{1}-V_{0}=100\left(e^{Z}-1\right)$, where Z is the daily logreturn. With $L=-X=$ $100\left(1-e^{Z}\right)$ we have

$$
\operatorname{VaR}_{0.01}(X)=F_{L}^{-1}(0.99)=-F_{X}(0.01)=100\left(1-e^{F_{Z}^{-1}(0.01)}\right)
$$

Since $\Phi^{-1}(0.01)=-\Phi^{-1}(0.99)=-2.33$ we see from Figure 1 that $F_{Z}^{-1}(0.01) \approx$ -0.06 . Therefore

$$
\operatorname{VaR}_{0.01}(X)=100\left(1-e^{-0.06}\right)=5.82
$$

Problem 2

(a) First we have that $P\left(I_{1}=1, I_{2}=1\right)=P\left(Y_{1} \leq F^{-1}(p), Y_{2} \leq F^{-1}(p)\right)=C(p, p)$. Since C is the Clayton copula we get $P\left(I_{1}=1, I_{2}=1\right)=\left(2 p^{-\theta}-1\right)^{-1 / \theta}$, and consequently
$\operatorname{Cor}\left(I_{1}, I_{2}\right)=\frac{E\left[I_{1} I_{2}\right]-E\left[I_{1}\right] E\left[I_{2}\right]}{\sqrt{\operatorname{Var}\left(I_{1}\right) \operatorname{Var}\left(I_{2}\right)}}=\frac{P\left(I_{1}=1, I_{2}=1\right)-p^{2}}{p(1-p)}=\frac{\left(2 p^{-\theta}-1\right)^{-1 / \theta}-p^{2}}{p(1-p)}$.
(b) It follows from the calculations in Section 9.5.1 that

$$
a=\frac{1-c}{c} p, \quad b=\frac{1-c}{c}(1-p),
$$

where $c=\operatorname{Cor}\left(I_{1}, I_{2}\right)$ is the answer in (a).

Problem 3

It follows from the formulation that

$$
V_{1}=10^{6}\left(e^{Y_{1}}-e^{Y_{2}}\right),
$$

where we can write

$$
\begin{aligned}
& Y_{1}=\mu_{1}+\sigma_{1} Z_{1} \\
& Y_{2}=\mu_{2}+\sigma_{2}\left(\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right)
\end{aligned}
$$

In polar coordinates we can write

$$
Z_{1}=r \sin \theta, \quad Z_{2}=r \sin \theta
$$

which implies that $\Delta V_{1}=V_{1}-V_{0}$ can be written as a function of θ as

$$
\Delta V_{1}(\theta)=10^{6}\left(\exp \left\{\mu_{1}+r \cos \theta\right\}-\exp \left\{\mu_{2}+\sigma_{2}\left(\rho r \cos \theta+\sqrt{1-\rho^{2}} r \sin \theta\right\}\right)\right.
$$

Linearizing gives $e^{x} \approx 1+x$ and hence

$$
\Delta V_{1}^{\operatorname{lin}}(\theta)=10^{6}\left(\mu_{1}+r \cos \theta-\mu_{2}-\sigma_{2}\left(\rho r \cos \theta+\sqrt{1-\rho^{2}} r \sin \theta\right)\right.
$$

Minimizing with respect to θ gives (differentiating and put equal to zero)

$$
0=10^{6} r\left(-\sigma_{1} \sin \theta-\sigma_{2}\left(-\rho \sin \theta+\sqrt{1-\rho^{2}} \cos \theta\right)\right.
$$

Solving for θ gives

$$
\tan \theta=\frac{\sigma_{2} \sqrt{1-\rho^{2}}}{\rho \sigma_{2}-\sigma_{1}}
$$

and therefore

$$
\theta=\arctan \left(\frac{\sigma_{2} \sqrt{1-\rho^{2}}}{\rho \sigma_{2}-\sigma_{1}}\right)+k \pi, \quad k=\cdots-1,0,1, \ldots
$$

An investigation of the derivative shows that the minimum in the interval $[0,2 \pi]$ is at

$$
\theta^{*}=\arctan \left(\frac{\sigma_{2} \sqrt{1-\rho^{2}}}{\rho \sigma_{2}-\sigma_{1}}\right)+\pi
$$

With $r^{2}=25$ and the numerical values of the parameters inserted the corresponding scenario for Y_{1} and Y_{2} is

$$
Y_{1}=-0.017, \quad Y_{2}=-0.0045
$$

which is the answer to (a). The corresponding (linearized) loss is

$$
\Delta V_{1}^{\operatorname{lin}}\left(\theta^{*}\right)=-12229
$$

This is the answer to (b).

Problem 4

(a) Using linearization we have

$$
\Delta V^{\operatorname{lin}}=10^{6}\left(Y_{1}-Y_{2}\right)
$$

With $\mathbf{w}=10^{6}(1,-1)^{T}$ we get

$$
\Delta V^{\operatorname{lin}}=\mathbf{w}^{T} \mathbf{Y}={ }^{d} \mathbf{w}^{T} \boldsymbol{\mu}+\sqrt{\mathbf{w}^{T} A A^{T} \mathbf{w}} Z_{1},
$$

where Z_{1} has a standard t_{3} distribution. It follows that

$$
\operatorname{VaR}_{p}\left(\Delta V^{\operatorname{lin}}\right)=-\mathbf{w}^{T} \boldsymbol{\mu}+\sqrt{\mathbf{w}^{T} A A^{T} \mathbf{w}} t_{3}^{-1}(p)
$$

That is,

$$
p=1-t_{3}\left(\frac{10^{4}+\mathbf{w}^{T} \boldsymbol{\mu}}{\sqrt{\mathbf{w}^{T} A A^{T} \mathbf{w}}}\right) .
$$

With numerical values inserted we get $p=1-t_{3}(4.06)=0.013$
(b) Replacing 10^{4} by 12229 we get $p=1-t_{3}(5)=0.0077$.

Problem 5

Using the subexponential approximation as in Example 8.18 it follows that

$$
F_{X_{D}}^{-1}(u) \approx F_{Y}^{-1}\left(1-\frac{1-u}{n^{1-\alpha}}\right)
$$

where $F_{Y}^{-1}(v)=(1-v)^{-1 / \alpha}$. This implies that

$$
\begin{aligned}
\mathrm{ES}_{p}\left(X_{D}\right) & \approx \frac{1}{p} \int_{0}^{p} F_{Y}^{-1}\left(1-\frac{u}{n^{1-\alpha}}\right) d u \\
& =\frac{1}{p} \int_{0}^{p}\left(\frac{u}{n^{1-\alpha}}\right)^{-1 / \alpha} d u \\
& =\frac{\alpha}{\alpha-1} p^{-1 / \alpha} n^{1 / \alpha-1}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathrm{ES}_{p}\left(X_{1}\right) & \approx \frac{1}{p} \int_{0}^{p} F_{Y}^{-1}(1-u) d u \\
& =\frac{1}{p} \int_{0}^{p} u^{-1 / \alpha} d u \\
& =\frac{\alpha}{\alpha-1} p^{-1 / \alpha}
\end{aligned}
$$

We conclude that $\delta_{p}(n) \approx n^{1 / \alpha-1}$ for small p.

