KTH Matematik

SOLUTION TO EXAMINATION IN SF2980 RISK MANAGEMENT, 2008-12-19, 08:00-13:00.

Examiner: Henrik Hult, tel. 790 6911, e-mail: hult@kth.se

Problem 1

Select n such that

$$
0.999 \leq P\left(\max \left\{X_{1}, \ldots, X_{n}\right\}>\operatorname{VaR}_{0.99}(F)\right)=1-0.99^{n}
$$

Then $n \geq \log (0.001) / \log (0.99)=687.3$. Hence, n has to be at least 688 .

Problem 2

(a) Let F_{x}^{\leftarrow} and F_{y}^{\leftarrow} denote the quantiles on the x and y axis of the QQ plot. If the QQ plot curves downwards then the distance between quantiles of y is smaller than the distance between quantiles of x and hence F_{x} has heavier tail than F_{y}. Similarly if the QQ plot curves upwards then F_{y} has heavier tail than F_{x}.
From the distribution function of the GPD we see that $1-G_{\gamma, \beta}(x)=(1+\gamma x / \beta)^{-1 / \gamma}$ decays slower if γ is large. Hence, higher γ corresponds to heavier tails.
From the left QQ plot we see that sample 2 has heavier tail than sample 1 and from the right QQ plot we see that it also has heavier tail than sample 3. Hence, sample 2 has heaviest tail which corresponds to $\gamma^{(2)}=0.53$. From the middle plot we see that sample 1 has heavier tail than sample 3 so it must be that $\gamma^{(1)}=0.28$ and $\gamma^{(3)}=0.11$. Thus, the correct alternative is (v).
(b) The mean excess function of the GPD is given by

$$
\begin{aligned}
e(u) & =E[X-u \mid X>u] \\
& =\frac{1}{P(X>u)} \int_{u}^{\infty} P(X \geq x) d x \\
& =\frac{1}{(1+\gamma u / \beta)^{-1 / \gamma}} \int_{u}^{\infty}(1+\gamma x / \beta)^{-1 / \gamma} \\
& =\frac{1}{(1+\gamma u / \beta)^{-1 / \gamma}} \frac{\beta}{1-\gamma}(1+\gamma u / \beta)^{1-1 / \gamma} \\
& =\frac{\gamma}{1-\gamma} u+\frac{\beta}{1-\gamma} .
\end{aligned}
$$

We see that the mean excess function is linear with slope $\gamma /(1-\gamma)$. The same holds then for the POT approximation of the distribution of X by

$$
P(X>x+u)=\frac{N_{u}}{n} \bar{G}_{\beta, \gamma}(x) .
$$

From the mean excess plots we can estimate the slope as approximately slope left ≈ 0.2, slope middle ≈ 1.25, and slope right ≈ 0.5. This gives $\gamma_{\text {left }} \approx 0.16, \gamma_{\text {middle }} \approx$ 0.57 , and $\gamma_{\text {right }} \approx 0.33$. So matching with the estimated values gives

- Left plot $\leftrightarrow \gamma=0.11 \leftrightarrow$ sample 3.
- Midde plot $\leftrightarrow \gamma=0.53 \leftrightarrow$ sample 2 .
- Right plot $\leftrightarrow \gamma=0.28 \leftrightarrow$ sample 1 .

Problem 3

If $X=\left(X_{1}, X_{2}\right)$ has an elliptical distribution then X has representation $X \stackrel{\text { d }}{=}$ $\mu+R A S$ where $R \geq 0, A$ is a matrix, and S is independent of R and uniformly distributed on the unit circle. In particular $X_{1} \stackrel{\text { d }}{=} \mu_{1}+R(A S)_{1}$ and $X_{2} \stackrel{\text { d }}{=} \mu_{2}+R(A S)_{2}$ which means that they have the same distribution up to location and scale. That is, $X_{1} \stackrel{\text { d }}{=} a X_{2}+b$ for some constants a and b. Let F_{1} and F_{2} denote the marginal distributions of X_{1} and X_{2}. Then it follows that $F_{1}^{\leftarrow}(\cdot)=a F_{2}^{\leftarrow}(\cdot)+b$. In particular, if for some reference distribution G and some constants c and $d, G^{\leftarrow}(\cdot)=c F_{1}^{\leftarrow}(\cdot)+d$ then it follows that $G \leftarrow(\cdot)=c a F_{2}^{\leftarrow}(\cdot)+d+b$. In other words, if the QQ plot of a sample from X_{1} with respect to a reference distribution G is linear, then the QQ plot of a sample from X_{2} with respect to the same G is also linear.
We see from the given QQ plots that F_{1} appears to be close to a t_{6} distribution because the QQ plot is linear, whereas F_{2} seems close to a normal distribution. As argued above this is not compatible with (X_{1}, X_{2}) having an elliptical distribution, so the answer is NO.

Problem 4

By inverting F_{1} and F_{2} we find that $F_{1}^{-1}(u)=-\ln (1-u)$ and $F_{2}^{-1}(v)=-\frac{1}{2} \ln (1-u)$. Let

$$
A=\left(\begin{array}{cc}
1 & 0 \\
\rho & \sqrt{1-\rho^{2}}
\end{array}\right)
$$

so that

$$
A A^{T}=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

is a correlation matrix. To generate one sample we do the following.

- Generate Z_{1} and Z_{2} as independent $N(0,1)$.
- $\operatorname{Put}\left(X_{1}, X_{2}\right)^{T}=A\left(Z_{1}, Z_{2}\right)^{T}$.
- $\operatorname{Put}\left(U_{1}, U_{2}\right)^{T}=\left(\Phi\left(X_{1}\right), \Phi\left(X_{2}\right)\right)^{T}$.
- $\operatorname{Put}\left(Y_{1}, Y_{2}\right)^{T}=\left(F_{1}^{-1}\left(U_{1}\right), F_{2}^{-1}\left(U_{2}\right)\right)^{T}$.

Then $\left(Y_{1}, Y_{2}\right)^{T}$ has the desired distribution. Indeed,

$$
\begin{aligned}
P\left(Y_{1} \leq y_{1}, Y_{2} \leq y_{2}\right) & =P\left(F_{1}^{-1}\left(U_{1}\right) \leq y_{1}, F_{2}^{-1}\left(U_{2}\right) \leq y_{2}\right) \\
& =P\left(U_{1} \leq F_{1}\left(y_{1}\right), U_{2} \leq F_{2}\left(y_{2}\right)\right) \\
& =C\left(F_{1}\left(y_{1}\right), F_{2}\left(y_{2}\right)\right)
\end{aligned}
$$

where C is the Gaussian copula given by

$$
C\left(u_{1}, u_{2}\right)=\Phi\left(\Phi^{-1}\left(u_{1}\right), \Phi^{-1}\left(u_{2}\right)\right)
$$

Problem 5

First note that $P\left(X_{i}=1\right)=p=1-P\left(X_{i}=0\right)$ and the same for X_{j}. Then $E\left[X_{i}\right]=p$ and $\operatorname{var}\left(X_{i}\right)=p(1-p)$ and the same for X_{j}. We will also use that $p=P\left(Y_{j} \leq F_{j}^{\leftarrow}(p)\right)$. Write

$$
\begin{aligned}
\rho_{L}\left(X_{i}, X_{j}\right) & =\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sqrt{\operatorname{var}\left(X_{i}\right) \operatorname{var}\left(X_{j}\right)}} \\
& =\frac{E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]}{\sqrt{p(1-p) p(1-p)}} \\
& =\frac{P\left(X_{i}=1, X_{j}=1\right)-p^{2}}{p(1-p)} \\
& =\frac{P\left(Y_{i} \leq F_{i}^{\leftarrow}(p), Y_{j} \leq F_{j}^{\leftarrow}(p)\right)-p^{2}}{p(1-p)} \\
& =\frac{P\left(Y_{i} \leq F_{i}^{\leftarrow}(p), Y_{j} \leq F_{j}^{\leftarrow}(p)\right)}{P\left(Y_{j} \leq F_{j}^{\leftarrow}(p)\right)(1-p)}-\frac{p^{2}}{p(1-p)} \\
& =\frac{P\left(Y_{i} \leq F_{i}^{\leftarrow}(p) \mid Y_{j} \leq F_{j}^{\leftarrow}(p)\right)}{1-p}-\frac{p^{2}}{p(1-p)} .
\end{aligned}
$$

Now, since $\lambda_{L}\left(Y_{i}, Y_{j}\right)=\lim _{p \rightarrow 0} P\left(Y_{i} \leq F_{i}^{\leftarrow}(p) \mid Y_{j} \leq F_{j}^{\leftarrow}(p)\right)$ by definition, it follows that

$$
\lim _{p \rightarrow 0} \rho_{L}\left(X_{i}, X_{j}\right)=\lim _{p \rightarrow 0} \frac{P\left(Y_{i} \leq F_{i}^{\leftarrow}(p) \mid Y_{j} \leq F_{j}^{\leftarrow}(p)\right)}{1-p}-\frac{p^{2}}{p(1-p)}=\lambda_{L}\left(Y_{i}, Y_{j}\right)
$$

