LECTURE 9

CH. 6.2-6.3 FROM A. FRIEDMAN

Theorem. (AFr 6.2.4.) (Riesz theorem)
Let H be a Hilbert space. For any bounded linear fuctional $x^{*}: \mathrm{H} \rightarrow \mathbb{C}$, there exists $z \in \mathrm{H}$ s.t.

- $x^{*}(x)=(x, z), \quad x \in H$.
- $\left\|x^{*}\right\|=\|z\|$.

Definition.

Let H be a Hilbert space and let $\mathrm{M} \subset \mathrm{H}$ be a closed linear subspace. Then according to Theorem 6.2.2 for any $x \in H$ there exist unique vectors $y, z \in H$ such that

$$
x=y+z, \quad y \in M, \quad z \text { orthogonal to } M
$$

We say then that y is the projection of x on M and define the linear operator $P: H \rightarrow M$ such that $P x=y . P$ is called the projection operator on M.

Definition.

Let T be a bounded linear operator $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$. The adjoint T^{*} of T is defined by the equality

$$
(T x, y)=\left(x, T^{*} y\right), \quad \forall x, y \in H
$$

If $\mathrm{T}=\mathrm{T}^{*}$ then T is called self-adjoint.
Remark. If T is self-adjoint then the scalar product ($\mathrm{T} x, y$) is real.
Theorem. (AFr 6.3.1.)
Let P be a projection. Then

- P is a self-adjoint linear operator.
- $\mathrm{P}^{2}=\mathrm{P}$.
- $\|P\|=1$ if $P \neq 0$.

Theorem. (AFr 6.3.2.)
If P is a self-adjoint linear operator s.t. $P^{2}=P$, then P is a projection.

Definition.

Let P_{1} and P_{2} be projections in H. We say that P_{1} is orthogonal to P_{2} is $P_{1} P_{2}=0$.

Remark. Since $\left(P_{1} P_{2}\right)^{*}=P_{2}^{*} P_{1}^{*}=P_{2} P_{1}$, then $P_{1} P_{2}=0$ implies $P_{2} P_{1}=0$.
Theorem. (AFr 6.3.4.)
The operator $P_{1}+P_{2}$ is a projection iff $P_{1} P_{2}=0$.
Theorem. (AFr 6.3.5.)
The product $P_{1} P_{2}=0$ is a projection iff $P_{1} P_{2}=P_{2} P_{1}$.

Home exercises.

1. (ex. 6.3.3 from AFr) Let a linear operator P satisfies the properties $\mathrm{P}^{*}=\mathrm{P}$ and P^{2} is a projection. Is P a projection?
2. (ex. 6.3.5 from AFr) Confider the operator $Q f(t)=a(t) f(t)$ in $L^{2}(0,1)$, where $a(t)$ is a scalar function. Find necessary and sufficient conditions on $a(t)$ for Q to be a projection.
3. Let $\mathrm{H}=\mathrm{L}^{2}(-\infty, \infty)$ and let

$$
x(x)= \begin{cases}1, & |x|<1 \\ 0, & |x| \geq 1\end{cases}
$$

Show that

- the operator $\operatorname{Pf}(x)=\chi(x) f(x)$ is a projection
- Let \mathcal{F} be the Fourier transform

$$
\mathcal{F} f(\xi)=\int_{-\infty}^{\infty} f(x) e^{-i x \xi} d x
$$

Show that the operator Q defined by

$$
\mathrm{Qf}=\mathcal{F}^{-1} \chi \mathcal{F} \mathrm{f}
$$

is a projection.

- Is PQP a projection?

