LECTURE 9 CH. 6.2-6.3 FROM A. FRIEDMAN

Theorem. (AFr 6.2.4.) (Riesz theorem)

Let H be a Hilbert space. For any bounded linear fuctional x^* : $H \to \mathbb{C}$, there exists $z \in H$ s.t.

- $x^*(x) = (x, z), \quad x \in H.$ • $||x^*|| = ||z||.$
- ||x|| = ||2||.

Definition.

Let H be a Hilbert space and let $M \subset H$ be a closed linear subspace. Then according to Theorem 6.2.2 for any $x \in H$ there exist unique vectors $y, z \in H$ such that

$$x = y + z$$
, $y \in M$, z orthogonal to M .

We say then that y is the projection of x on M and define the linear operator $P : H \rightarrow M$ such that Px = y. P is called the projection operator on M.

Definition.

Let T be a bounded linear operator T : $H \rightarrow H$. The adjoint T^{*} of T is defined by the equality

$$(\mathsf{T}\mathbf{x},\mathbf{y}) = (\mathbf{x},\mathsf{T}^*\mathbf{y}), \quad \forall \mathbf{x},\mathbf{y} \in \mathsf{H}.$$

If $T = T^*$ then T is called self-adjoint.

Remark. If T is self-adjoint then the scalar product (Tx, y) is real.

Theorem. (AFr 6.3.1.)

Let P be a projection. Then

- P is a self-adjoint linear operator.
- $P^2 = P$.
- ||P|| = 1 if $P \neq 0$.

Theorem. (AFr 6.3.2.)

If P is a self-adjoint linear operator s.t. $P^2 = P$, then P is a projection.

Definition.

Let P_1 and P_2 be projections in H. We say that P_1 is orthogonal to P_2 is $P_1P_2 = 0$.

Remark. Since $(P_1P_2)^* = P_2^*P_1^* = P_2P_1$, then $P_1P_2 = 0$ implies $P_2P_1 = 0$.

Theorem. (AFr 6.3.4.)

The operator $P_1 + P_2$ is a projection *iff* $P_1P_2 = 0$.

Theorem. (AFr 6.3.5.) The product $P_1P_2 = 0$ is a projection *iff* $P_1P_2 = P_2P_1$.

Home exercises.

1. (*ex.* 6.3.3 from AFr) Let a linear operator P satisfies the properties $P^* = P$ and P^2 is a projection. Is P a projection?

2. (ex. 6.3.5 from AFr) Confider the operator Qf(t) = a(t)f(t) in $L^2(0, 1)$, where a(t) is a scalar function. Find necessary and sufficient conditions on a(t) for Q to be a projection.

3. Let $H = L^2(-\infty, \infty)$ and let

$$\chi(x) = egin{cases} 1, & |x| < 1, \ 0, & |x| \ge 1 \end{cases}.$$

Show that

- the operator $Pf(x) = \chi(x)f(x)$ is a projection
- Let \mathcal{F} be the Fourier transform

$$\mathcal{F}f(\xi) = \int_{-\infty}^{\infty} f(x) e^{-ix\xi} dx.$$

Show that the operator Q defined by

$$Q f = \mathcal{F}^{-1} \chi \mathcal{F} f$$

is a projection.

• Is PQP a projection?

2