LECTURE 8 CH. 6 FROM A. FRIEDMAN

Definition.

H is called a Hilbert space if H is a complex linear space supplied with (\cdot, \cdot) : $H \times H \to \mathbb{C}$ s.t.

- $(x, x) \ge 0$, & $(x, x) = 0 \Leftrightarrow x = 0$.
- $(\mathbf{x} + \mathbf{y}, z) = (\mathbf{x}, z) + (\mathbf{y}, z), \forall \mathbf{x}, \mathbf{y}, z \in \mathbf{H}.$
- $(\lambda x, y) = \lambda(x, y), \forall x, y \in H, \lambda \in \mathbb{C}.$
- $(\mathbf{x},\mathbf{y}) = \overline{(\mathbf{y},\mathbf{x})}, \forall \mathbf{x},\mathbf{y} \in \mathbf{H}.$
- If $\{x_n\}$ is a Cauchy sequence and $\lim_{n,m\to\infty}(x_n-x_m, x_n-x_m) = 0$, then there exists $x \in H$, s.t. $\lim_{n\to\infty}(x_n-x, x_n-x) = 0$.

 (\cdot, \cdot) is called scalar product.

 $\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})}$ is called the norm of \mathbf{x} .

Examples.

• $H = l^2 = \{a = \{a_n\}_{n=1}^{\infty}\}\)$, such that $\sum_{n=1}^{\infty} |a_n|^2 < \infty$. We define scalar product

$$(\mathbf{a},\mathbf{b}) = \sum_{n=1}^{\infty} a_n \overline{b_n}, \qquad \mathbf{a},\mathbf{b} \in H.$$

• $H = L^2(0, 1) = \{f : \int_0^1 |f(x)|^2 dx < \infty\}$ with scalar product

$$(f,g) = \int_0^1 f(x) \overline{g(x)} \, dx.$$

• Sobolev space

$$H^{1}(0,1) = \Big\{f: \int_{0}^{1} \left(|f'(x)|^{2} + |f(x)|^{2} \right) dx < \infty \Big\}.$$

The corresponding scalar product is equal to

$$(f,g) = \int_0^1 \left(f'(x)\overline{g(x)} + f(x)\overline{g(x)} \right) dx.$$

Theorem. (AFr 6.1.1) (Schwartz inequality) Let H be a Hilbert space, $x, y \in H$. Then

$$|(\mathbf{x},\mathbf{y})| \leq \|\mathbf{x}\| \|\mathbf{y}\|.$$

Theorem. (AFr 6.1.2)

Any Hilbert space is a Banach space whose norm is equal to $\|\cdot\| = \sqrt{(\cdot, \cdot)}$.

Corollary. (AFr 6.1.3)

The norm in a Hilbert space is strictly convex, namely

$$\|\mathbf{x}\| = \|\mathbf{y}\| = 1, \quad \|\mathbf{x} + \mathbf{y}\| = 2 \quad \Rightarrow \quad \mathbf{x} = \mathbf{y}.$$

Theorem. (AFr 6.1.4)

Let H be a Hilbert space. Then its norm satisfies the identity

$$2(\|\mathbf{x}\|^{2} + \|\mathbf{y}\|^{2}) = \|\mathbf{x} + \mathbf{y}\|^{2} + \|\mathbf{x} - \mathbf{y}\|^{2}.$$

Theorem. (AFr 6.1.5)

If H is a Banach space with norm satisfying Th 6.1.4 then H is a Hilbert space.

Definition. Let H be a Hilbert space, $x, y \in H$. We say that x is orthogonal to y if (x, y) = 0.

Let $M \subset H$. We say that x is orthogonal to M if (x, y) = 0, $\forall y \in M$. Let N, $M \subset H$. We say that N is orthogonal to M if (x, y) = 0, $x \in N$, $y \in M$.

Lemma. (AFr 6.2.1)

Let H be a Hilbert space and let $M \subset H$ be a closed convex subset. Then for any x_0 there exists unique element $y_0 \in M$ s.t.

$$||x_0 - y_0|| = \inf_{y \in \mathcal{M}} ||x_0 - y||.$$

Theorem. (AFr 6.2.2)

Let M be a closed subspace of a Hilbert space H. Then for any $x_0 \in H$ there are elements $y_0 \in M$ and z_0 orthogonal to M s.t.

$$\mathbf{x}_0 = \mathbf{y}_0 + \mathbf{z}_0$$

and this decomposition is unique.

Home exercises.

Let A be a 2×2 real matrix. Define

 $|A| = \sqrt{A^{\mathsf{T}}A}.$

We say that $A \leq B$, if for any vector X

$$X^{\mathsf{T}}AX \leq X^{\mathsf{T}}BX.$$

2

1. Let

$$\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad I = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Show that

$$|(\sigma_3 + I) + (\sigma_1 - I)| \leq |(\sigma_3 + I)| + |(\sigma_1 - I)|.$$

2. Let A and B be two 2×2 real matrices. Show that the inequality

$$|||A| - |B||| \le ||A - B||$$

is not always true.