LECTURE 8

CH. 6 FROM A. FRIEDMAN

Definition.

H is called a Hilbert space if H is a complex linear space supplied with $(\cdot, \cdot): \mathrm{H} \times \mathrm{H} \rightarrow \mathbb{C}$ s.t.

- $(x, x) \geq 0, \&(x, x)=0 \Leftrightarrow x=0$.
- $(x+y, z)=(x, z)+(y, z), \forall x, y, z \in H$.
- $(\lambda x, y)=\lambda(x, y), \forall x, y \in H, \lambda \in \mathbb{C}$.
- $(x, y)=\overline{(y, x)}, \forall x, y \in H$.
- If $\left\{x_{n}\right\}$ is a Cauchy sequence and $\lim _{n, m \rightarrow \infty}\left(x_{n}-x_{m}, x_{n}-x_{m}\right)=0$, then there exists $x \in H$, s.t. $\lim _{n \rightarrow \infty}\left(x_{n}-x, x_{n}-x\right)=0$.
(\cdot, \cdot) is called scalar product.
$\|x\|=\sqrt{(x, x)}$ is called the norm of x.

Examples.

- $\mathrm{H}=\mathrm{l}^{2}=\left\{\mathbf{a}=\left\{\mathrm{a}_{n}\right\}_{n=1}^{\infty}\right\}$, such that $\sum_{n=1}^{\infty}\left|\mathrm{a}_{n}\right|^{2}<\infty$. We define scalar product

$$
(\mathbf{a}, \mathbf{b})=\sum_{n=1}^{\infty} a_{n} \overline{b_{n}}, \quad \mathbf{a}, \mathbf{b} \in H
$$

- $\mathrm{H}=\mathrm{L}^{2}(0,1)=\left\{\mathrm{f}: \int_{0}^{1}|\mathrm{f}(\mathrm{x})|^{2} \mathrm{dx}<\infty\right\}$ with scalar product

$$
(f, g)=\int_{0}^{1} f(x) \overline{g(x)} d x
$$

- Sobolev space

$$
H^{1}(0,1)=\left\{f: \int_{0}^{1}\left(\left|f^{\prime}(x)\right|^{2}+|f(x)|^{2}\right) d x<\infty\right\} .
$$

The corresponding scalar product is equal to

$$
(f, g)=\int_{0}^{1}\left(f^{\prime}(x) \overline{g(x)}+f(x) \overline{g(x)}\right) d x
$$

Theorem. (AFr 6.1.1) (Schwartz inequality)
Let H be a Hilbert space, $x, y \in H$. Then

$$
|(x, y)| \leq \underset{1}{\leq}\|x\|\|y\| .
$$

Theorem. (AFr 6.1.2)
Any Hilbert space is a Banach space whose norm is equal to $\|\cdot\|=\sqrt{(\cdot, \cdot)}$.
Corollary. (AFr 6.1.3)
The norm in a Hilbert space is strictly convex, namely

$$
\|x\|=\|y\|=1, \quad\|x+y\|=2 \quad \Rightarrow \quad x=y .
$$

Theorem. (AFr 6.1.4)
Let H be a Hilbert space. Then its norm satisfies the identity

$$
2\left(\|x\|^{2}+\|y\|^{2}\right)=\|x+y\|^{2}+\|x-y\|^{2} .
$$

Theorem. (AFr 6.1.5)
If H is a Banach space with norm satisfying Th 6.1.4 then H is a Hilbert space.

Definition. Let H be a Hilbert space, $x, y \in H$. We say that x is orthogonal to y if $(x, y)=0$.

Let $M \subset H$. We say that x is orthogonal to M if $(x, y)=0, \forall y \in M$.
Let $N, M \subset H$. We say that N is orthogonal to M if $(x, y)=0, x \in N$, $y \in M$.

Lemma. (AFr 6.2.1)
Let H be a Hilbert space and let $\mathrm{M} \subset \mathrm{H}$ be a closed convex subset. Then for any x_{0} there exists unique element $y_{0} \in M$ s.t.

$$
\left\|x_{0}-y_{0}\right\|=\inf _{y \in M}\left\|x_{0}-y\right\| .
$$

Theorem. (AFr 6.2.2)
Let M be a closed subspace of a Hilbert space H. Then for any $x_{0} \in H$ there are elements $y_{0} \in M$ and z_{0} orthogonal to M s.t.

$$
x_{0}=y_{0}+z_{0}
$$

and this decomposition is unique.

Home exercises.

Let A be a 2×2 real matrix. Define

$$
|A|=\sqrt{A^{\top} A} .
$$

We say that $A \leq B$, if for any vector X

$$
X^{\top} A X \leq X^{\top} B X
$$

1. Let

$$
\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad I=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Show that

$$
\left|\left(\sigma_{3}+\mathrm{I}\right)+\left(\sigma_{1}-\mathrm{I}\right)\right| \not \leq\left|\left(\sigma_{3}+\mathrm{I}\right)\right|+\left|\left(\sigma_{1}-\mathrm{I}\right)\right| .
$$

2. Let A and B be two 2×2 real matrices. Show that the inequality

$$
\||\mathrm{A}|-|\mathrm{B}|\| \leq\|\mathrm{A}-\mathrm{B}\|
$$

is not always true.

