LECTURE 7 CH. 4.8 FROM A. FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Theorem. (Hahn-Banach) (AFr 4.8.2)

Let X be a normed linear vector space and let $Y \subset X$ be a linear subspace. Then for any $y^* \in Y^*$ there exists $x^* \in X^*$ s.t.

$$\|\mathbf{x}^*\| = \|\mathbf{y}^*\|$$
 & $\mathbf{x}^*(\mathbf{y}) = \mathbf{y}^*(\mathbf{y}), \quad \forall \mathbf{y} \in \mathbf{Y}.$

Theorem. (AFr 4.8.3)

Let X be a normed linear vector space and let $Y \subset X$ be a linear subspace. Let $x_0 \in X$ s.t.

$$\inf_{y\in Y}\|y-x_0\|=d>0.$$

Then there exists $x^* \in X^*$ s.t.

$$\mathbf{x}^*(\mathbf{x}_0) = 1,$$
 $\|\mathbf{x}^*\| = \frac{1}{d}$ and $\mathbf{x}^*(\mathbf{y}) = 0,$ $\forall \mathbf{y} \in \mathbf{Y}.$

Corollary. (AFr 4.8.4)

If X is a normed linear space, then for any $x \neq 0$ there exists $x^* \in X^*$ s.t. $||x^*|| = 1$ and $x^*(x) = ||x||$.

Corollary. (AFr 4.8.5)

If X is a normed linear space and if $y \neq z, y, z \in X$, then there exists $x^* \in X^*$ s.t. $x^*(y) \neq x^*(z)$.

Corollary. (AFr 4.8.6) Let X be a normed linear vector space. Then for any $x \in X$

$$\|\mathbf{x}\| = \sup_{\mathbf{x}^* \neq 0} \frac{|\mathbf{x}^*(\mathbf{x})|}{\|\mathbf{x}^*\|} = \sup_{\|\mathbf{x}^*\|=1} |\mathbf{x}^*(\mathbf{x})|.$$

Corollary. (AFr 4.8.7)

Let X be a normed linear vector space and let $Y \subset X$ be a linear subspace. Assume that $\overline{Y} \neq X$. Then there exists $x^* \neq 0$ s.t. $x^*(y) = 0, \forall y \in Y$.

Definition. The null space of $x^* \in X^*$ is the set

$$N_{x^*} = \{ x \in X : x^*(x) = 0 \}.$$

Let $x^* \neq 0$. Then there is $x_0 \neq 0$ s.t. $x^*(x) = 1$ and any $x \in X$ can be written as $x = z + \lambda x_0$, where $\lambda = x^*(x)$ and $z = x - \lambda x_0 \in N_{x^*}$.

Example. Let $f \in L^p(0, 1)$ $g \in L^q(0, 1)$ 1/p + 1/q = 1 be real functions and define a linear functional G^* on $L^p(0, 1)$ such that

$$G^*(f) = \int_0^1 f(x)g(x) \, dx.$$

Then $N_g = \{f \in L^p(0, 1) : \int f(x)g(x) dx = 0\}.$

Definition. Let $c\in\mathbb{R},$ $x^{*}\neq0.$ The set

$$\{x \in X : \operatorname{Re} x^*(x) = c\}$$

is called hyperplane.

The sets $\{x \in X : \operatorname{Re} x^*(x) \ge c\}$, $\{x \in X : \operatorname{Re} x^*(x) \le c\}$ are called half-spaces.

Any hyperplane coincides with $N_{x^*} + cx_0$, $x^*(x_0) = 1$ for some x^* , x_0 and $c \in \mathbb{R}$.

Definition. Let $K \subset X$ be a subset of a normed linear space X and let $x_0 \in K$. If for $x^* \in X^*$ we have $\text{Re } x^*(x) \leq \text{Re } x^*(x_0)$ for any $x_0 \in K$, then we say that x^* supports K at x_0 (or that x^* is tangent to Kat x_0).

The hyperplane $\{x \in X : \text{Rex}^*(x) = ||x_0||\}$ is called a supporting (or tangent) hyperplane to K at x_0 .

Corollary. (AFr 4.8.8)

Let X be a normed linear space and let $x_0 \in \overline{B} = \{x : ||x|| \le 1\}$. Then for any x_0 s.t. $||x_0|| = 1$ there is a tangent hyperplane to B at x_0 .

Home exercises.

1. Define C_0 as a set of sequences $\{a_k\}_{k=1}^{\infty}$ for which $\lim_{k\to\infty} a_k = 0$. If we introduce the following norm

$$|\{\mathfrak{a}_k\}_{k=1}^{\infty}|| = \max_{k\in\mathbb{N}}|\mathfrak{a}_k|,$$

then C_0 becomes a normed linear space. Assume that $\{\lambda\}_{k=1}^{\infty} \in l_1 \left(\Leftrightarrow \sum_{k=1}^{\infty} |\lambda_k| \le \infty \right)$.

Show that

$$\Lambda(\{a_k\}_{k=1}^\infty) = \sum_{k=1}^\infty \lambda_k a_k$$

is a linear functional on C_0 and $\|\Lambda\| = \sum_{k=1}^{\infty} |\lambda_k|$. 2. Show that $l_{\infty} = l_1^*$ but $l_{\infty}^* \neq l_1$. 3. Let X be a Banach space. We say that the functional $\boldsymbol{\phi}$ is convex if

$$\varphi\left(\frac{x+y}{2}\right) \le \frac{1}{2}\left(\varphi(x) + \varphi(y)\right).$$

Define a mapping $L: X \to X^*$, s.t.

$$L\phi(\mathbf{x}^*) = \psi(\mathbf{x}^*) = \sup_{\mathbf{x}\in X} \Big(\mathbf{x}^*(\mathbf{x}) - \phi(\mathbf{x})\Big).$$

Show that

- ψ is convex.
- If now $L^*: X^* \to X$ is defined by

$$L^*\phi(x) = \sup_{x^* \in X^*} \Big(x^*(x) - \psi(x^*) \Big),$$

then $L^*L\phi = \phi$.