LECTURE 6
CH. 4.7 - 4.8 FROM A. FRIEDMAN
FOUNDATIONS OF MORDERN ANALYSIS

Example 1. Let X = L%(0, 1) and let Tf(x) = f(0) with Dt = C'[0, 1].
We show that T cannot be closed.

Indeed, let f,,(x) = (1 —x)™ Then f,, € D1, |[fn|12(01) = 0, t — o0, but
T, =1.

Note that in this case Gt = {(f, f(0)) : f € Dy} and ||(f, Tf)|| = ||f||;2 +
[f(0)].

Example 2. Let X = LP(0,1),p > 1, Tf(x) = f'(x) and Dy = C'[0, 1].
We show that T can be closed.
The operator T is not closed as it is defined on C'[0, 1] which is not a closed
set in LP(0, 1). In order to show that T can be closed if is enough to show
that

f,.e Dy, fn,—0, Tf,—g = g¢g=0.

Let ||fa|ltr — 0, f € C'[0, 1] and let

:
J If (x) — g(x)[Pdx — 0.
0
If 1/p +1/q =1, then for any ¢ € C(0, 1) we have

:

[ tro0-atnet x| < ([ im0t a) ([ omrax)” ~o,

0 0 0
which implies

1
J fr(x)e(x)dx — J g(x)@(x) dx.

On the other hand
1

‘ J; £ (%) (x) dx‘ < (J; £/ (x))P dx)w(Jo o(x)| dx)”q 50, n—oo.

Thus

H; 0(:)9(x) dx| = 0

for any ¢ € C(0, 1) which means that g = 0 as an LP function.
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Definition. Let X be a linear vector space and let p : X — R(C) be a linear
operator. Then p is called a real(complex) linear functional.

Examples.
e p: f(x) — f(0),fe C(—1,1).
o Let f € L0, 27) and let

f(x) = i ane ™/V2m

be its Fourier series. Then p — a,, is a complex linear functional
on L?(0, 27).
e Let g € L%(0,1). We define p = p,, such that

1
polf) = L fx)g(x) dx.

Definition. A partially ordered set S is a non-empty set with a relation" <"
satisfying the properties:

o x <x

ex<yysz=—x<z
If for any x,y € S either x <y ory < x then S is called totally ordered.

Definition. Let T C S, and S be partially ordered. The element x € S is
called an upper bound if for any y € S, we have y < x.

Definition. Let S be partially ordered. The element x € S is called maximal
if for any y € S the relation x <y implies y < x.

Theorem. (Zorn’s lemma)
If S is a partially ordered set s.t. every totally ordered subset has an upper
bound, then S has a maximal element.

Notation.
By X* we denote the set of all continuous linear functionals on X.

Theorem. (Hahn-Banach lemma, AFr Th 4.8.1.)
Let X be a real linear vector space space and let p be a real functional (not
necessary linear) on X s.t.

p(x+y) <px)+prly)  plAx) =Ap(x), A>0, x,yeX
Let f be a real linear functional on a linear subspace Y C X s.t.

f(x) < p(x), Vx €Y.



Then there exists a real linear functional F on X s.t.
F(x) = f(x), x € X, and F(x) <p(x), VxeX

Home exercises.

1. (ex. 4.7.6 from AFr)
Prove that d/dx cannot be extended into a linear operator from LP(0, 1)
into itself.

2. (ex. 4.7.7 from AFr)
Let C™(Q) be a normed space equipped with

[l =sup > D,
O0<]od<m
where QO C R™. Define C*(Q) the subset of C*°(Q) of all functions u s.t.
|lw||m < 0oV m > 1. Introduce in C*(Q) a metric p(u,v) = p(u—v,0),
where
= 1

p(U,O) = A
m=1

Determine if d/dx : C*(Q) — C*(Q) is continuous.
3. Let X = L%(0,27), @n = {e™/V/2m)® Let 1 € X be an element

n=—o0"

which is not a finite linear combination of ¢, and let D be a set of all finite
linear conbinations of {¢,,}. Denote by T the operator

N
T(blj) + Y cj@j) — by,
i=—M
Show that Gy is not a gragh. (Namely, show that (\{»,\) € Gt and ({,0) €
Gr.)



