LECTURE 6 CH. 4.7 - 4.8 FROM A. FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Example 1. Let $X = L^2(0, 1)$ and let Tf(x) = f(0) with $D_T = C^1[0, 1]$. We show that T cannot be closed. Indeed, let $f_n(x) = (1 - x)^n$. Then $f_n \in D_T$, $\|f_n\|_{L^2(0,1)} \to 0$, $t \to \infty$, but

Indeed, let $f_n(x) = (1 - x)^n$. Then $f_n \in D_T$, $||f_n||_{L^2(0,1)} \to 0$, $t \to \infty$, but $Tf_n = 1$.

Note that in this case $G_T=\{(f,f(0)):\,f\in D_T\}$ and $\|(f,Tf)\|=\|f\|_{L^2}+|f(0)|.$

Example 2. Let $X = L^{p}(0, 1)$, p > 1, Tf(x) = f'(x) and $D_{T} = C^{1}[0, 1]$. We show that T can be closed.

The operator T is not closed as it is defined on $C^{1}[0, 1]$ which is not a closed set in $L^{p}(0, 1)$. In order to show that T can be closed if is enough to show that

$$\begin{split} f_n \in D_T, \quad f_n \to 0, \quad Tf_n \to g \quad \Longrightarrow \quad g = 0. \\ \text{Let } \|f_n\|_{L^p} \to 0, \, f_n \in C^1[0,1] \text{ and let} \end{split}$$

$$\int_0^1 |f'_n(x) - g(x)|^p dx \to 0.$$

If 1/p + 1/q = 1, then for any $\varphi \in C_0^\infty(0, 1)$ we have $\left| \int_0^1 (f'_n(x) - g(x))\varphi(x) \, dx \right| \le \left(\int_0^1 |f'_n(x) - g(x)|^p \, dx \right)^{1/p} \left(\int_0^1 \varphi(x)|^q \, dx \right)^{1/q} \to 0,$

which implies

$$\int_0^1 f'_n(x)\phi(x)\,dx \to \int_0^1 g(x)\phi(x)\,dx$$

On the other hand

$$\left|\int_0^1 f'_n(x)\phi(x)\,dx\right| \le \left(\int_0^1 |f'_n(x))|^p\,dx\right)^{1/p} \left(\int_0^1 \phi(x)|^q\,dx\right)^{1/q} \to 0, \qquad n \to \infty.$$

Thus

$$\left|\int_{0}^{1} g(x)\varphi(x)\,dx\right| = 0$$

for any $\phi\in C_0^\infty(0,1)$ which means that g=0 as an L^p function.

Definition. Let X be a linear vector space and let $p : X \to \mathbb{R}(\mathbb{C})$ be a linear operator. Then p is called a real(complex) linear functional.

Examples.

- $p: f(x) \rightarrow f(0), f \in C(-1, 1).$
- Let $f \in L^{(0,2\pi)}$ and let

$$f(x) = \sum_{-\infty}^{\infty} a_n e^{-inx} / \sqrt{2\pi}$$

be its Fourier series. Then $p\to a_n$ is a complex linear functional on $L^2(0,2\pi).$

• Let $g \in L^2(0, 1)$. We define $p = p_g$ such that

$$p_g(f) = \int_0^1 f(x)g(x) \, dx.$$

Definition. A partially ordered set S is a non-empty set with a relation " \leq " satisfying the properties:

- $x \leq x$
- $x \le y, y \le z \Longrightarrow x \le z$.

If for any $x, y \in S$ either $x \leq y$ or $y \leq x$ then S is called totally ordered.

Definition. Let $T \subset S$, and S be partially ordered. The element $x \in S$ is called an upper bound if for any $y \in S$, we have $y \le x$.

Definition. Let S be partially ordered. The element $x \in S$ is called maximal if for any $y \in S$ the relation $x \leq y$ implies $y \leq x$.

Theorem. (Zorn's lemma)

If S is a partially ordered set s.t. every totally ordered subset has an upper bound, then S has a maximal element.

Notation.

By X^{*} we denote the set of all continuous linear functionals on X.

Theorem. (Hahn-Banach lemma, AFr Th 4.8.1.)

Let X be a real linear vector space space and let p be a real functional (not necessary linear) on X s.t.

 $p(x+y) \leq p(x) + p(y) \qquad p(\lambda x) = \lambda p(x), \qquad \lambda > 0, \quad x,y \in X.$

Let f be a real linear functional on a linear subspace $Y \subset X$ s.t.

$$f(x) \le p(x), \quad \forall x \in Y.$$

Then there exists a real linear functional F on X s.t.

$$F(x)=f(x), \qquad x\in X, \qquad \text{and} \qquad F(x)\leq p(x), \quad \forall x\in X.$$

Home exercises.

1. (*ex.* 4.7.6 *from* AFr)

Prove that d/dx cannot be extended into a linear operator from $L^{p}(0, 1)$ into itself.

2. (*ex.* 4.7.7 *from* AFr)

Let $C^{m}(\Omega)$ be a normed space equipped with

$$\|\mathbf{u}\|_{\mathfrak{m}} = \sup_{\Omega} \sum_{0 \le |\alpha| \le \mathfrak{m}} |\mathsf{D}^{\alpha}\mathbf{u}|,$$

where $\Omega \subset \mathbb{R}^n$. Define $C^*(\Omega)$ the subset of $C^{\infty}(\Omega)$ of all functions u s.t. $\|u\|_m < \infty \forall m \ge 1$. Introduce in $C^*(\Omega)$ a metric $\rho(u, v) = \rho(u - v, 0)$, where

$$\rho(u, 0) = \sum_{m=1}^{\infty} \frac{1}{2^m} \frac{\|u\|_m}{1 + \|u\|_m}.$$

Determine if $d/dx:\, C^*(\Omega) \to C^*(\Omega)$ is continuous.

3. Let $X = L^2(0, 2\pi)$, $\varphi_n = \{e^{inx}/\sqrt{2\pi}\}_{n=-\infty}^{\infty}$. Let $\psi \in X$ be an element which is not a finite linear combination of φ_n and let D be a set of all finite linear combinations of $\{\varphi_n\}$. Denote by T the operator

$$T\Big(b\psi+\sum_{i=-M}^N c_j\phi_j\Big)=b\psi.$$

Show that \overline{G}_T is not a gragh. (Namely, show that $(\psi, \psi) \in \overline{G}_T$ and $(\psi, 0) \in \overline{G}_T$.)