LECTURE 5 LINEAR TRANSFORMATIONS CH. 4.6 - 4.7 FROM AVNER FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Definition. Let T be a one-to-one linear operator $T : X \to Y$. Then the inverse operator T^{-1} is defined as

 $T^{-1}y = x$ if Tx = y.

Note that domain T^{-1} is a linear subspace of Y.

Theorem. (AFr 4.6.2)

Let X and Y be a Banach spaces and let T be a one-to-one bounded linear map from X onto Y. Then T^{-1} is a bounded map.

Corollary. (AFr 4.6.3)

Let X be Banach spaces equipped with either $\|\cdot\|_1$ or $\|\cdot\|_2$. Suppose that there exists a constant K s.t.

 $\|x\|_1 \leq K \, \|x\|_2 \qquad \text{for all} \qquad x \in X.$

Then there exists a constant K' s.t.

$$\|\mathbf{x}\|_2 \le \mathbf{K}' \, \|\mathbf{x}\|_1 \qquad \text{for all} \qquad \mathbf{x} \in \mathbf{X}.$$

Definition. Let X and Y be linear vector spaces and let $T : X \to Y$, where T is defined on D_T . Then

$$G_{\mathsf{T}} = \{(\mathsf{x},\mathsf{T}\mathsf{x}): \mathsf{x} \in \mathsf{D}_{\mathsf{T}}\}$$

is called the graph of T.

If G_T is a closed set in $X \times Y$ then we say that T is a closed operator.

Note that T is closed *iff*

$$x_n \in D_T \quad x_n \to x, \quad \mathsf{T} x_n \to y \Longrightarrow x \in D_T, \quad \mathsf{T} x = y.$$

Theorem. (AFr 4.6.4) (Closed graph theorem) Let X and Y be Banach spaces and let $T : X \to Y$ be a linear operator with

 $D_T = X$. If T is closed then T is continuous.

Definition. Let X and Y be linear vector spaces and let $T : X \to Y$ defined on D_T . A linear operator $S : X \to Y$ is called an extension of T if $D_T \subset D_S$ and Tx = Sx for all $x \in D_T$.

Definition. Let X be a linear vector space and Y be a normed space. Let $T : X \rightarrow Y$ defined on D_T . Suppose that there exists S such that

(i) S is a closed linear operator

(ii) S is an extension of T

(iii) If S' satisfies (i) and (ii), then S' is an extension of S. Then we say that S is a s closure of T. The closure of T is denoted by \overline{T} .

Theorem. (AFr 4.7.1)

Let X and Y be Banach spaces. T has a closure \overline{T} *iff*

 $x_n \in D_T \quad x_n \to 0, \quad Tx_n \to y \Longrightarrow y = 0.$

Home exercises.

1. (*ex.* 4.6.6 from AFr)

2. (*ex.* 4.6.7 from AFr)