LECTURE 5

LINEAR TRANSFORMATIONS CH. 4.6-4.7 FROM AVNER FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Definition. Let T be a one-to-one linear operator $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$. Then the inverse operator T^{-1} is defined as

$$
T^{-1} y=x \quad \text { if } \quad T x=y
$$

Note that domain T^{-1} is a linear subspace of Y .
Theorem. (AFr 4.6.2)
Let X and Y be a Banach spaces and let T be a one-to-one bounded linear map from X onto Y. Then T^{-1} is a bounded map.

Corollary. (AFr 4.6.3)
Let X be Banach spaces equipped with either $\|\cdot\|_{1}$ or $\|\cdot\|_{2}$. Suppose that there exists a constant K s.t.

$$
\|x\|_{1} \leq K\|x\|_{2} \quad \text { for all } \quad x \in X
$$

Then there exists a constant K^{\prime} s.t.

$$
\|x\|_{2} \leq K^{\prime}\|x\|_{1} \quad \text { for all } \quad x \in X
$$

Definition. Let X and Y be linear vector spaces and let $T: X \rightarrow Y$, where T is defined on D_{T}. Then

$$
\mathrm{G}_{\mathrm{T}}=\left\{(x, \mathrm{~T} x): x \in \mathrm{D}_{\mathrm{T}}\right\}
$$

is called the graph of T.
If G_{T} is a closed set in $X \times Y$ then we say that T is a closed operator.
Note that T is closed iff

$$
x_{n} \in D_{T} \quad x_{n} \rightarrow x, \quad T x_{n} \rightarrow y \Longrightarrow x \in D_{T}, \quad T x=y
$$

Theorem. (AFr 4.6.4) (Closed graph theorem)
Let X and Y be Banach spaces and let $T: X \rightarrow Y$ be a linear operator with $\mathrm{D}_{\mathrm{T}}=\mathrm{X}$. If T is closed then T is continuous.

Definition. Let X and Y be linear vector spaces and let $T: X \rightarrow Y$ defined on D_{T}. A linear operator $S: X \rightarrow Y$ is called an extension of T if $D_{T} \subset D_{S}$ and $T x=S x$ for all $x \in D_{T}$.

Definition. Let X be a linear vector space and Y be a normed space. Let $T: X \rightarrow Y$ defined on D_{T}. Suppose that there exists S such that
(i) S is a closed linear operator
(ii) S is an extension of T
(iii) If S^{\prime} satisfies (i) and (ii), then S^{\prime} is an extension of S.

Then we say that S is a s closure of T. The closure of T is denoted by \bar{T}.
Theorem. (AFr 4.7.1)
Let X and Y be Banach spaces. T has a closure \bar{T} iff

$$
x_{n} \in D_{T} \quad x_{n} \rightarrow 0, \quad T x_{n} \rightarrow y \Longrightarrow y=0
$$

Home exercises.

1. (ex. 4.6.6 from AFr)
2. (ex. 4.6.7 from AFr)
