LECTURE 2 CH.4.1 FROM AVNER FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Definition. Linear subspace.

Lemma. (AFr 4.3.1)

Let $Y \subset X$ be a closed linear subspace of a normed linear space X. Then for any $\varepsilon > 0$ there exists $z \in X$ s.t. ||z|| = 1 and $||z - y|| > 1 - \varepsilon$, for any $y \in Y$.

Theorem. (AFr 4.3.2)

If Y is a finite-dimensional linear subspace of a normed linear space, then Y is closed.

Theorem. (AFr 4.3.3)

A normed linear space is of finite dimension **iff** every bounded subset is relatively compact.

Example. Let $X = L^2(0, 2\pi)$ and let $e_k(x) = e^{ikx}/\sqrt{2\pi}$, $k = 0, \pm 1, \dots$. Then

$$\int_{0}^{2\pi} |e_{k}(x)|^{2} dx = 1 \quad \text{and} \quad \int_{0}^{2\pi} |e_{k} - e_{j}|^{2} dx = 2.$$

The set $\{e_k\}_{k\in\mathbb{Z}}$ is not relatively compact.

Home exercises.

1. (ex. 4.3.4 from AFr) A norm $\|\cdot\|$ is called strictly convex if $\|x\| = \|y\| = 1$ and $\|x + y\| = 2$ implies x = y.

Show that $L^p(\mathbb{R}^n)$ is strictly convex if 1 and is not strictly if <math>p = 1 or $p = \infty$.

2. (*ex.* 4.3.5 from AFr)

Prove that C[a, b] is not equivalent to L^p norm if $1 \le p < \infty$.