LECTURE 15 MULTIPLICATION BY INDEPENDENT VARIABLE, SPECTRAL THEOREM

1. MULTIPLICATION BY INDEPENDENT VARIABLE

Let μ be a measure defined on σ -algebra of subsets from \mathbb{R} (for definition see Av.Fr., Definition 1.2.1). Let A_{μ} be the operator of multiplication by independent variable in $L^{2}(\mathbb{R}, \mu)$

$$A_{\mu}x(t) = tx(t),$$
 $D(A_{\mu}) = \{x : \int_{\mathbb{R}} (1+t^2) | x(t)^2 \, d\mu < \infty\}.$

Proposition 1. *The operator* A_{μ} *is self-adjoint.*

Proof. Indeed, $\overline{D(A_{\mu})} = H$ and A_{μ} is symmetric. Moreover

 $(A_{\mu}x,y)=(x,h)$

implies $ty(t)=h(t)\in L^2(\mathbb{R},\mu)$ and $y\in D(A_\mu).$ Therefore $A_\mu^*=A_\mu.$ \Box

Recall that we say that $\lambda \in \text{supp } \mu$ if and only if $\mu(\lambda - \delta, \lambda + \delta) > 0$ for any $\delta > 0$.

Theorem 1. The spectrum $\sigma(A_{\mu})$ of the operator A_{μ} coincides with supp μ and, equivalently $\rho(A_{\mu}) = \mathbb{R} \setminus \text{supp } \mu$.

Proof. For any $\lambda \in \mathbb{R}$ consider $\Delta_{\varepsilon} = (\lambda - \varepsilon, \lambda + \varepsilon \text{ and suppose that } \lambda \notin \text{supp } \mu$. Then for some $\varepsilon > 0$ and $x \in D(A_{\mu})$ we have

$$\begin{split} \|A_{\mu}x - \lambda x\|^2 &= \int_{\mathbb{R}} (t - \lambda)^2 |x(t)|^2 \, d\mu(t) = \int_{\mathbb{R} \setminus \Delta_{\varepsilon}} (t - \lambda)^2 |x(t)|^2 \, d\mu(t) \\ &\geq \varepsilon^2 \int_{\mathbb{R} \setminus \Delta_{\varepsilon}} |x(t)|^2 \, d\mu = \varepsilon^2 \int_{\mathbb{R}} |x(t)|^2 \, d\mu = \varepsilon \|x\|^2. \end{split}$$

This implies $\lambda \in \rho(A_{\mu})$. Conversely, Let $\lambda \in \text{supp }\mu$. Then for any $\varepsilon > 0$ we have $\mu(\Delta_{\varepsilon}) > 0$. Choose $\varepsilon_n \to 0$, $n \to \infty$ and introduce the sequence of functions x_n s.t. $x_n(t) = 1$ if $t \in \Delta_{\varepsilon_n}$ and $x_n(t) = 0$ if $t \notin \Delta_{\varepsilon_n}$. Then

$$\|A_{\mu}x - \lambda x\|^2 = \int_{\Delta_{\varepsilon_n}} (t - \lambda)^2 d\mu(t) \le \varepsilon_n^2 \mu(\Delta_{\varepsilon_n} = \varepsilon_n^2 \|x_n\|^2,$$

which implies $\lambda \in \sigma(A_{\mu})$.

Theorem 2. The point spectrum $\sigma_p(A_\mu)$ coincides with the set of λ for which $\mu(\lambda) \neq 0$. Each of such λ is an eigenvalue.

Proof. If $A_{\mu}x = \lambda x$ then $(t - \lambda x(t) = 0$ and thus x(t) = 0 μ -almost everywhere on $\mathbb{R} \setminus \{\lambda\}$. This implies that the $(\mu$ -)support of x is the one point set $\{\lambda\}$. If $\mu(\lambda) \neq 0$ then the function $x_{\lambda}(t) = 1$ if $t = \lambda$ and $x_{\lambda}(t) = 0$ if $t \neq \lambda$ is an eigenfunction corresponding to λ .

Theorem 3. The continuous spectrum of the operator A_{μ} coincides with non-isolated points of supp μ .

Proof. Let λ be a non-isolated point. Such a point could be an eigenvalue. Assume that this is the case and let $F_{\lambda} = N(A_{\mu} - \lambda I)^{\perp}$ (if λ is not an eigenvalue then we assume that $F_{\lambda} = H$). Let x_{λ} is a function defined in the proof of Theorem 2 The condition $(y, x_{\lambda}) = 0$ is equivalent to

$$\int_{t=\lambda} y(t) \, d\mu = y(\lambda) \mu(\lambda) = 0$$

which implies that $y(\lambda) = 0$. Since λ is a non-isolated point of supp μ we can find a sequences $\lambda_n \to \lambda$ and $\varepsilon_n \to 0$ as $n \to \infty$ such that $\mu(\Delta_n) > 0$, where $\Delta_n = (\lambda_n - \varepsilon_n, \lambda_n + \varepsilon_n)$. Let now

$$\mathfrak{y}_{\mathfrak{n}}(\mathfrak{t}) = \begin{cases} 1, \text{ if } \mathfrak{t} \in \Delta_{\mathsf{N}}, \\ 0, \text{ if } \mathfrak{t} \notin \Delta_{\mathsf{N}}. \end{cases}$$

Then since $\lambda \notin \Delta_n$ we obtain that $y_n(\lambda) = 0$, so $y_n \in F_{\lambda}$. Now we obbtain

$$\begin{split} \|(A_{\mu} - \lambda I)y_{n}\|^{2} &= \int_{\Delta_{n}} (t - \lambda)^{2} d\mu(t) \leq (|\lambda - \lambda_{n}| + \epsilon)^{2} \mu(\Delta_{n}) \\ &= (|\lambda - \lambda_{n}| + \epsilon)^{2} \|y_{n}\|^{2}. \end{split}$$

Therefore λ is not a point from the resolvent set of the operator A_{μ} restricted on the set $D(A_{\mu}) \cap F_{\lambda}$. Since we exclude the eigenspace F_{λ} we arrive at $\lambda \in \sigma_c(A_{\mu})$.

Suppose now that for some ε the interval $\Delta_{\varepsilon} = (\lambda - \varepsilon, \lambda + \varepsilon)$ does not belong to supp $\{\lambda\}$ which means $\mu(\Delta_{\varepsilon}) = \mu(\lambda)$. Then for $y \in D(A_{\mu}) \cap F_{\mu}$

we have (recally(λ) = 0)

$$\begin{split} \|(A_{\mu} - \lambda I)y\|^{2} &= \int_{|t-\lambda| \ge \varepsilon} (t-\lambda)^{2} |y(t)|^{2} d\mu(t) \\ &\geq \varepsilon^{2} \int_{|t-\lambda| \ge \varepsilon} |y(t)|^{2} d\mu(t) = \varepsilon^{2} \|y\|^{2}. \end{split}$$

This implies $\lambda \notin \sigma_c(A_{\mu})$.

•

Remark 1. A point $\lambda \in \mathbb{R}$ can belong to both $\sigma_p(A_{\mu})$ and to $\sigma_c(A_{\mu})$.

2. Spectral Theorem

Let H be a Hilbert space and let $\mathcal{P}(H)$ be a set of orthogonal projections in H.

Definition. Let E be a mapping

$$E: \delta \rightarrow \mathcal{P},$$

defined on subsets δ from the sigma algebra of \mathbb{R} and satisfying the following properties

- If $\delta_n \subset \mathbb{R}$ is a countable number of disjoint sets, $\delta = \cup_n \delta_n$, then $E(\delta) = s \lim_{N \to \infty} \sum_{n=1}^N E(\delta_n)$
- $E(\mathbb{R}) = H$.

Then E is called a spectral measure.

Proposition 2. •
$$E(\delta_1)E(\delta_2) = E(\delta_1 \cap \delta_2) = E(\delta_2)E(delta_1).$$

• *If* $\delta_1 \subset \delta_2$ *then* $E(\delta_1) \leq E(\delta_2).$

Let $\chi_{\delta_k}(t)$ be a characteristic function of the set $\delta_k, \chi_{\delta_k}(t) = 1$, if $t \in \delta_k$ and $\chi_{\delta_k}(t) = 0$, if $t \notin \delta_k$. Let ϕ be a "step" function defined as

$$\phi(t) = \sum_{|k| \leq n} c_k \chi_{\delta_k}(t), \quad c_k \in \mathbb{C}.$$

Then we can define the operator

$$\int_{\mathbb{R}} \phi(\lambda) \, dE(\lambda) := \sum_{|k| \leq n} c_k E(\delta_k).$$

Theorem 4. Let A be a self-adjoint operator in a Hilbert space H. Then there exists a unique spectral measure E_A such that

(1)
$$A = \int_{\mathbb{R}} t \, dE(t)$$

which is called the spectral decomposition of the operator A.

Definition.

supp
$$E_A = \{\lambda : \forall \varepsilon > 0, E_A(\lambda - \varepsilon, \lambda + \varepsilon) \neq 0\}$$

Theorem 5. Let E_A be the spectral measure of a self-adjoint operator A. *Then*

- $\sigma(A) = \operatorname{supp} E_A$
- $\sigma_{p}(A) = \{\lambda \in \mathbb{R} : E_{A}(\lambda) \neq 0\}$ and the eigenspace corresponding to $\lambda \in \sigma_{p}(A)$ is equal to $E_{A}(\lambda)H$.
- $\sigma_c(A)$ is the set of non-isolated points of supp E_A .

3. COMPACT OPERATORS

4