
LECTURE 14
RESOLVENT SET AND SPECTRUM

Let GA = {(x,Ax), x ∈ D(A)} ⊂ H⊕H be the graph of the operator A.

We define W : H⊕H → H⊕H such that

W(x.h) = (−x, h), x, h ∈ H.

Obviously W2 = I.

Theorem 1. If D(A) = H, then (WGA)⊥ = GA∗ .

Proof. The fact that (h, y) ∈ H ⊕ H is orthogonal to WGA implies
−(x, h) + (Ax, y) = 0. Thus (Ax, y) = (x, h) and by definition of the
adjoint operator we have y ∈ D(A∗) and h = A∗y. �

Theorem 2. The operator A∗ is always closed.

Proof. Indeed, the orthogonal complement to a linear subspace is always
closed. Therefore GA∗ = (WGA)⊥, which the graph of the operator A∗, is
a closed set. �

Theorem 3. If D(A) = H. Then the condition D(A∗) = H is equivalent to
A being closable. Moreover, in this case A∗∗ exists and A∗∗ = A.

Proof. By Theorem 1 and since W2 = I we obtain

WGA∗ = W
[
WGA

]⊥
=

[
W2GA

]⊥
= GA.

Therefore

GA∗∗ =
[
WGA∗

]⊥
= GA = GA.

�

Theorem 4. The subspaces R(A) and N(A∗) are orthogonal in H and

H = R(A)⊕N(A∗).

Proof. The element y ∈ N(A∗) if and only if (Ax, y) = 0 for all x ∈
D(A). This is equivalent to y ∈ R(A). �
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1. SPECTRUM AND RESOLVENT OF A CLOSED OPERATOR

Let A be a closed operator in a Hilbert space H.

Definition. dA = defA = dim [R(A)]⊥ is called the defect of the operator
A.

Remark 1. By using Theorem 4 we immediately obtain that dA =

dim N(A∗).

Theorem 5. Let us assume that A is a closed operator such for some con-
stant C > 0 ‖Ax‖ ≥ C‖x‖ for all x ∈ D(A). Let B be an operator in H

such that D(A) ⊂ D(B) and for any x ∈ D(A)

‖Bx‖ ≤ a‖Ax‖, where, a < 1.

Then

• A + B is closed on D(A)

• ‖(A + B)x‖ ≥ (1 − a)C‖x‖
• dA+B = dA.

Proof. The graph GA is closed w.r.t. the norm |x|A = ‖x‖ + ‖Ax‖. There-
fore by using the triangle inequality we have

(1 − a)|x|A ≤ |x|A+B ≤ (1 + a)|x|A.

Therefore the norms | · |A and | · |A+B — and thus since GA is closed then
GA+B is closed. This implies that A + B is closed. Now

‖(A + B)x‖ ≥ ‖Ax‖− ‖Bx‖ ≥ (1 − a)‖Ax‖ ≥ (1 − a)C‖x‖,

which proves the second statement of the theorem Assume for a moment
that dA+B < dA. Then there exists f ∈ R(A)⊥, f 6= 0, such that f⊥R(A +

B)⊥. This implies f ∈ R(A + B) and therefore there exists y ∈ D(A) s.t.
f = (A + B)y. Since f⊥R(A) we have (f,Ay) = 0.

‖Ay‖2 = (Ay, Ay) = −(By, Ay) ≤ ‖By‖‖Ay‖ ≤ a‖Ay‖2,

which gives a contradiction.
If we assume that dA + B > dA, then we can find f = Ay, f 6= s.t.

f⊥R(A + B) and thus (f, (A + B)y) = 0. Finally

‖Ay‖2 = (Ay, Ay) = −(By, Ay) ≤ ‖By‖‖Ay‖ ≤ a‖Ay‖2.
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Corollary 1. Let A be an operator in H satisfying the condition ‖Ax‖ ≥
C‖x‖, x ∈ D(A) and let B be a bounded operator s.t. ‖B‖ < C. Then

dA+B = dA.

Proof.
‖Bx‖ ≤ ‖B‖‖x‖ ≤ ‖B‖C−1‖Ax‖.

We now apply Theorem 5 with a = ‖B‖C−1. �

Definition.
The defect of the operator A − λI is denoted by dA(λ) and called the

defect of A at λ.
If A − λI has a bounded inverse on its image (A − λI)(H)

(
namely

‖(A − λI)x‖ ≥ C‖x‖ for some C > 0
)

then λ is called a quasi-regular
point of A.

All such points are denoted by ρ̂(A).

Lemma 1. Let A be a closed operator in H such that (‖A−λI)x‖ ≥ C0‖x‖
for some C0 > 0 and ∀x ∈ D(A). Then

D := {λ ∈ C : |λ − λ0| < C0} ⊂ ρ̂(A)

and dA(λ) is constant on D.

Proof. If we write

A − λI = (A − λ0) + (λ0 − λ)I

then we complete the proof by using Corollary 1. �

We now immediately obtain the following result:

Theorem 6. The set ρ̂(A) ⊂ C is open and the value of dA is constant on
each connected component of ρ̂(A).

Definition. If dA(λ) = 0 for some λ ∈ ρ̂(A), then λ is called a regular
point of A. In this case the operator (A − λI)−1 is bounded.

The set of all regular points of A is called a resolvent set and denoted by
ρ(A).

Remark 2. The set ρ(A) is open.

Definitions.
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• The set σ(A) = C \ ρ(A) is called the spectrum of theoperator A.
• σ̂(A) = C \ ρ̂(A) is called the core of the spectrum.
• The set σp(A) = {λ ∈ C : N(A − λI) 6= {0}} is called the point

spectrum of A and λ ∈ σp is called the eigenvalue of A.
• The set σc(A) = {λ ∈ C : R(A − λI) 6= R(A − λI)} is called the

continuous spectrum of A.

Example.
1. Let A = 1

i
d
dt

defined on D(A) = {x :
∫1

−1
(|x ′(t)|2 + |x(t)|2)dt, } ⊂

L2(−1, 1). D(A) is a dense in L2(−1, 1) set. Solutions of the equation
Ax = λx are x(t) = eikt and σp(A) = k, k = 0,±1,±2, . . . .

2. Let A be defined as Ax(t) = tx(t) in L2(0,∞). The operator Ais
bounded and its spectrum is continuous and equal σc(A) = [0,∞). (For
the proof see Lecture 15).

Definition. Let D(A) = H. An operator A is called symmetric if (Ax, y) =

(x,Ay) ∀x, y ∈ D(A).

It follows from the definition that A ⊂ A∗. Therefore A can be closed and
in particular A = A∗∗.

Home exercises.

1. Let A0 = 1
i

d
dt

defined the class of functions {x : x ∈ C∞
0 (R)}. Show

that A0 is symmetric and closable.

2. Let A = 1
i

d
dt

defined on {x :
∫1

−1
(|x ′(t)|2 + |x(t)|2)dt, } ⊂ L2(−1, 1)

such that x(−1) = x(1). Show that A is self-adjoint.

3. Describe the closure of the class of functions {x : x ∈ C∞
0 (R)} with

respect to ∫
R

|x ′(t)|2 dt.


