LECTURE 14 RESOLVENT SET AND SPECTRUM

Let $\mathrm{G}_{\mathrm{A}}=\{(x, A x), x \in D(A)\} \subset H \oplus H$ be the graph of the operator A.
We define $W: \mathrm{H} \oplus \mathrm{H} \rightarrow \mathrm{H} \oplus \mathrm{H}$ such that

$$
W(x . h)=(-x, h), \quad x, h \in H .
$$

Obviously $\mathrm{W}^{2}=\mathrm{I}$.
Theorem 1. If $\overline{\mathrm{D}(\mathrm{A})}=\mathrm{H}$, then $\left(\mathrm{WG}_{\mathrm{A}}\right)^{\perp}=\mathrm{G}_{\mathrm{A}^{*}}$.
Proof. The fact that $(\mathrm{h}, \mathrm{y}) \in \mathrm{H} \oplus \mathrm{H}$ is orthogonal to WG_{A} implies $-(x, h)+(A x, y)=0$. Thus $(A x, y)=(x, h)$ and by definition of the adjoint operator we have $y \in D\left(A^{*}\right)$ and $h=A^{*} y$.

Theorem 2. The operator \mathcal{A}^{*} is always closed.
Proof. Indeed, the orthogonal complement to a linear subspace is always closed. Therefore $G_{A^{*}}=\left(W G_{A}\right)^{\perp}$, which the graph of the operator A^{*}, is a closed set.

Theorem 3. If $\overline{\mathrm{D}(A)}=H$. Then the condition $\overline{\mathrm{D}\left(A^{*}\right)}=\mathrm{H}$ is equivalent to A being closable. Moreover, in this case $A^{* *}$ exists and $A^{* *}=\bar{A}$.

Proof. By Theorem 1 and since $W^{2}=$ I we obtain

$$
W G_{A^{*}}=W\left[W G_{A}\right]^{\perp}=\left[W^{2} G_{A}\right]^{\perp}=\overline{G_{A}} .
$$

Therefore

$$
\mathrm{G}_{\mathrm{A}^{* *}}=\left[W \mathrm{G}_{\mathrm{A}^{*}}\right]^{\perp}=\overline{\mathrm{G}_{\mathrm{A}}}=\mathrm{G}_{\overline{\mathrm{A}}} .
$$

Theorem 4. The subspaces $\overline{\mathrm{R}(\mathrm{A})}$ and $\mathrm{N}\left(\mathrm{A}^{*}\right)$ are orthogonal in H and

$$
\mathrm{H}=\overline{\mathrm{R}(A)} \oplus \mathrm{N}\left(A^{*}\right)
$$

Proof. The element $y \in N\left(A^{*}\right)$ if and only if $(A x, y)=0$ for all $x \in$ $D(A)$. This is equivalent to $y \in R(A)$.

1. Spectrum and resolvent of a closed operator

Let A be a closed operator in a Hilbert space H.
Definition. $d_{A}=\operatorname{def} A=\operatorname{dim}[R(A)]^{\perp}$ is called the defect of the operator A.

Remark 1. By using Theorem 4 we immediately obtain that $d_{A}=$ $\operatorname{dim} N\left(A^{*}\right)$.

Theorem 5. Let us assume that \mathcal{A} is a closed operator such for some constant $\mathrm{C}>0\|A x\| \geq \mathrm{C}\|x\|$ for all $x \in \mathrm{D}(\mathrm{A})$. Let B be an operator in H such that $\mathrm{D}(\mathrm{A}) \subset \mathrm{D}(\mathrm{B})$ and for any $\mathrm{x} \in \mathrm{D}(\mathrm{A})$

$$
\|B x\| \leq a\|A x\|, \quad \text { where }, \quad a<1 .
$$

Then

- $A+B$ is closed on $D(A)$
- $\|(A+B) x\| \geq(1-a) C\|x\|$
- $d_{A+B}=d_{A}$.

Proof. The graph G_{A} is closed w.r.t. the norm $|x|_{A}=\|x\|+\|A x\|$. Therefore by using the triangle inequality we have

$$
(1-a)|x|_{A} \leq|x|_{A+B} \leq(1+a)|x|_{A} .
$$

Therefore the norms $|\cdot|_{A}$ and $|\cdot|_{A+B}$ - and thus since G_{A} is closed then G_{A+B} is closed. This implies that $A+B$ is closed. Now

$$
\|(A+B) x\| \geq\|A x\|-\|B x\| \geq(1-a)\|A x\| \geq(1-a) C\|x\|,
$$

which proves the second statement of the theorem Assume for a moment that $d_{A+B}<d_{A}$. Then there exists $f \in R(A)^{\perp}, f \neq 0$, such that $f \perp R(A+$ $B)^{\perp}$. This implies $f \in R(A+B)$ and therefore there exists $y \in D(A)$ s.t. $f=(A+B) y$. Since $f \perp R(A)$ we have $(f, A y)=0$.

$$
\|A y\|^{2}=(A y, A y)=-(B y, A y) \leq\|B y\|\|A y\| \leq a\|A y\|^{2}
$$

which gives a contradiction.
If we assume that $d_{A}+B>d_{A}$, then we can find $f=A y, f \neq$ s.t. $f \perp R(A+B)$ and thus $(f,(A+B) y)=0$. Finally

$$
\|A y\|^{2}=(A y, A y)=-(B y, A y) \leq\|B y\|\|A y\| \leq a\|A y\|^{2}
$$

Corollary 1. Let A be an operator in H satisfying the condition $\|A x\| \geq$ $\mathrm{C}\|\mathrm{x}\|, \mathrm{x} \in \mathrm{D}(\mathrm{A})$ and let B be a bounded operator s.t. $\|\mathrm{B}\|<\mathrm{C}$. Then

$$
\mathrm{d}_{\mathrm{A}+\mathrm{B}}=\mathrm{d}_{\mathrm{A}} .
$$

Proof.

$$
\|B x\| \leq\|B\|\|x\| \leq\|B\| C^{-1}\|A x\|
$$

We now apply Theorem 5 with $\mathrm{a}=\|\mathrm{B}\| \mathrm{C}^{-1}$.

Definition.

The defect of the operator $A-\lambda I$ is denoted by $d_{A}(\lambda)$ and called the defect of A at λ.

If $A-\lambda I$ has a bounded inverse on its image $(A-\lambda I)(H)$ (namely $\|(A-\lambda I) x\| \geq C\|x\|$ for some $C>0)$ then λ is called a quasi-regular point of A.

All such points are denoted by $\hat{\rho}(A)$.
Lemma 1. Let A be a closed operator in H such that $(\| A-\lambda I) x\left\|\geq C_{0}\right\| x \|$ for some $\mathrm{C}_{0}>0$ and $\forall x \in \mathrm{D}(\mathrm{A})$. Then

$$
\mathbb{D}:=\left\{\lambda \in \mathbb{C}:\left|\lambda-\lambda_{0}\right|<C_{0}\right\} \subset \hat{\rho}(A)
$$

and $\mathrm{d}_{\mathrm{A}}(\lambda)$ is constant on \mathbb{D}.
Proof. If we write

$$
A-\lambda I=\left(A-\lambda_{0}\right)+\left(\lambda_{0}-\lambda\right) I
$$

then we complete the proof by using Corollary 1 .
We now immediately obtain the following result:
Theorem 6. The set $\hat{\rho}(\mathcal{A}) \subset \mathbb{C}$ is open and the value of d_{A} is constant on each connected component of $\widehat{\rho}(\mathcal{A})$.

Definition. If $d_{\mathcal{A}}(\lambda)=0$ for some $\lambda \in \hat{\rho}(\lambda)$, then λ is called a regular point of A. In this case the operator $(A-\lambda I)-1$ is bounded.

The set of all regular points of A is called a resolvent set and denoted by $\rho(A)$.

Remark 2. The set $\rho(A)$ is open.

Definitions.

- The set $\sigma(A)=\mathbb{C} \backslash \rho(A)$ is called the spectrum of theoperator A.
- $\hat{\sigma}(A)=\mathbb{C} \backslash \hat{\rho}(A)$ is called the core of the spectrum.
- The set $\sigma_{p}(A)=\{\lambda \in \mathbb{C}: N(A-\lambda I) \neq\{0\}\}$ is called the point spectrum of A and $\lambda \in \sigma_{p}$ is called the eigenvalue of A.
- The set $\sigma_{c}(A)=\{\lambda \in \mathbb{C}: R(A-\lambda I) \neq \overline{R(A-\lambda I)}\}$ is called the continuous spectrum of A.

Example.

1. Let $A=\frac{1}{i} \frac{d}{d t}$ defined on $D(A)=\left\{x: \int_{-1}^{1}\left(\left|x^{\prime}(t)\right|^{2}+|x(t)|^{2}\right) d t,\right\} \subset$ $L^{2}(-1,1)$. $D(A)$ is a dense in $L^{2}(-1,1)$ set. Solutions of the equation $A x=\lambda x$ are $x(t)=e^{i k t}$ and $\sigma_{p}(A)=k, k=0, \pm 1, \pm 2, \ldots$
2. Let A be defined as $A x(t)=t x(t)$ in $L^{2}(0, \infty)$. The operator A is bounded and its spectrum is continuous and equal $\sigma_{c}(A)=[0, \infty)$. (For the proof see Lecture 15).

Definition. Let $\overline{\mathrm{D}(A)}=H$. An operator A is called symmetric if $(A x, y)=$ $(x, A y) \forall x, y \in D(A)$.

It follows from the definition that $A \subset A^{*}$. Therefore A can be closed and in particular $\bar{A}=A^{* *}$.

Home exercises.

1. Let $A_{0}=\frac{1}{i} \frac{d}{d t}$ defined the class of functions $\left\{x: x \in C_{0}^{\infty}(\mathbb{R})\right\}$. Show that A_{0} is symmetric and closable.
2. Let $A=\frac{1}{i} \frac{d}{d t}$ defined on $\left\{x: \int_{-1}^{1}\left(\left|x^{\prime}(t)\right|^{2}+|x(t)|^{2}\right) d t,\right\} \subset L^{2}(-1,1)$ such that $x(-1)=x(1)$. Show that A is self-adjoint.
3. Describe the closure of the class of functions $\left\{x: x \in C_{0}^{\infty}(\mathbb{R})\right\}$ with respect to

$$
\int_{\mathbb{R}}\left|x^{\prime}(\mathrm{t})\right|^{2} \mathrm{dt}
$$

