LECTURE 14 RESOLVENT SET AND SPECTRUM

Let $G_A = \{(x, Ax), x \in D(A)\} \subset H \oplus H$ be the graph of the operator A.

We define $W : H \oplus H \to H \oplus H$ such that

$$W(x.h) = (-x, h), \qquad x, h \in H.$$

Obviously $W^2 = I$.

Theorem 1. If $\overline{D(A)} = H$, then $(WG_A)^{\perp} = G_{A^*}$.

Proof. The fact that $(h, y) \in H \oplus H$ is orthogonal to WG_A implies -(x, h) + (Ax, y) = 0. Thus (Ax, y) = (x, h) and by definition of the adjoint operator we have $y \in D(A^*)$ and $h = A^*y$.

Theorem 2. The operator A^* is always closed.

Proof. Indeed, the orthogonal complement to a linear subspace is always closed. Therefore $G_{A^*} = (WG_A)^{\perp}$, which the graph of the operator A^* , is a closed set.

Theorem 3. If $\overline{D(A)} = H$. Then the condition $\overline{D(A^*)} = H$ is equivalent to A being closable. Moreover, in this case A^{**} exists and $A^{**} = \overline{A}$.

Proof. By Theorem 1 and since $W^2 = I$ we obtain

$$WG_{A^*} = W[WG_A]^{\perp} = [W^2G_A]^{\perp} = \overline{G_A}.$$

Therefore

$$\mathsf{G}_{A^{**}} = \left[\mathsf{W}\mathsf{G}_{A^*}\right]^{\perp} = \overline{\mathsf{G}_A} = \mathsf{G}_{\overline{A}}.$$

Theorem 4. The subspaces $\overline{R(A)}$ and $N(A^*)$ are orthogonal in H and

$$\mathsf{H} = \overline{\mathsf{R}(\mathsf{A})} \oplus \mathsf{N}(\mathsf{A}^*).$$

Proof. The element $y \in N(A^*)$ if and only if (Ax, y) = 0 for all $x \in D(A)$. This is equivalent to $y \in R(A)$.

Let A be a closed operator in a Hilbert space H.

Definition. $d_A = def A = dim [R(A)]^{\perp}$ is called the defect of the operator A.

Remark 1. By using Theorem 4 we immediately obtain that $d_A = \dim N(A^*)$.

Theorem 5. Let us assume that A is a closed operator such for some constant $C > 0 ||Ax|| \ge C||x||$ for all $x \in D(A)$. Let B be an operator in H such that $D(A) \subset D(B)$ and for any $x \in D(A)$

$$\|B\mathbf{x}\| \le a \|A\mathbf{x}\|, \text{ where, } a < 1.$$

Then

- A + B is closed on D(A)
- $||(A + B)x|| \ge (1 a)C||x||$
- $d_{A+B} = d_A$.

Proof. The graph G_A is closed w.r.t. the norm $|x|_A = ||x|| + ||Ax||$. Therefore by using the triangle inequality we have

$$(1-a)|x|_A \le |x|_{A+B} \le (1+a)|x|_A.$$

Therefore the norms $|\cdot|_A$ and $|\cdot|_{A+B}$ — and thus since G_A is closed then G_{A+B} is closed. This implies that A + B is closed. Now

$$||(A + B)x|| \ge ||Ax|| - ||Bx|| \ge (1 - a)||Ax|| \ge (1 - a)C||x||,$$

which proves the second statement of the theorem Assume for a moment that $d_{A+B} < d_A$. Then there exists $f \in R(A)^{\perp}$, $f \neq 0$, such that $f \perp R(A + B)^{\perp}$. This implies $f \in R(A + B)$ and therefore there exists $y \in D(A)$ s.t. f = (A + B)y. Since $f \perp R(A)$ we have (f, Ay) = 0.

$$||Ay||^2 = (Ay, Ay) = -(By, Ay) \le ||By|| ||Ay|| \le a ||Ay||^2,$$

which gives a contradiction.

If we assume that $d_A + B > d_A$, then we can find f = Ay, $f \neq s.t.$ $f \perp R(A + B)$ and thus (f, (A + B)y) = 0. Finally

$$||Ay||^2 = (Ay, Ay) = -(By, Ay) \le ||By|| ||Ay|| \le a ||Ay||^2.$$

Corollary 1. Let A be an operator in H satisfying the condition $||Ax|| \ge C||x||$, $x \in D(A)$ and let B be a bounded operator s.t. ||B|| < C. Then

$$\mathbf{d}_{A+B} = \mathbf{d}_A$$

Proof.

$$||Bx|| \le ||B|| ||x|| \le ||B||C^{-1}||Ax||.$$

We now apply Theorem 5 with $a = ||B||C^{-1}$.

Definition.

The defect of the operator $A - \lambda I$ is denoted by $d_A(\lambda)$ and called the defect of A at λ .

If $A - \lambda I$ has a bounded inverse on its image $(A - \lambda I)(H)$ (namely $||(A - \lambda I)x|| \ge C||x||$ for some C > 0) then λ is called a quasi-regular point of A.

All such points are denoted by $\hat{\rho}(A)$.

Lemma 1. Let A be a closed operator in H such that $(||A - \lambda I|x|| \ge C_0 ||x||$ for some $C_0 > 0$ and $\forall x \in D(A)$. Then

$$\mathbb{D} := \{\lambda \in \mathbb{C} : |\lambda - \lambda_0| < C_0\} \subset \hat{\rho}(A)$$

and $d_A(\lambda)$ is constant on \mathbb{D} .

Proof. If we write

$$A - \lambda I = (A - \lambda_0) + (\lambda_0 - \lambda)I$$

then we complete the proof by using Corollary 1.

We now immediately obtain the following result:

Theorem 6. The set $\hat{\rho}(A) \subset \mathbb{C}$ is open and the value of d_A is constant on each connected component of $\hat{\rho}(A)$.

Definition. If $d_A(\lambda) = 0$ for some $\lambda \in \hat{\rho}(A)$, then λ is called a regular point of A. In this case the operator $(A - \lambda I) - 1$ is bounded.

The set of all regular points of A is called a resolvent set and denoted by $\rho(A)$.

Remark 2. The set $\rho(A)$ is open.

Definitions.

- The set $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is called the spectrum of the perator A.
- $\hat{\sigma}(A) = \mathbb{C} \setminus \hat{\rho}(A)$ is called the core of the spectrum.
- The set $\sigma_p(A) = \{\lambda \in \mathbb{C} : N(A \lambda I) \neq \{0\}\}$ is called the point spectrum of A and $\lambda \in \sigma_p$ is called the eigenvalue of A.
- The set $\sigma_c(A) = \{\lambda \in \mathbb{C} : R(A \lambda I) \neq \overline{R(A \lambda I)}\}$ is called the continuous spectrum of A.

Example.

1. Let $A = \frac{1}{i} \frac{d}{dt}$ defined on $D(A) = \{x : \int_{-1}^{1} (|x'(t)|^2 + |x(t)|^2) dt, \} \subset L^2(-1,1)$. D(A) is a dense in $L^2(-1,1)$ set. Solutions of the equation $Ax = \lambda x$ are $x(t) = e^{ikt}$ and $\sigma_p(A) = k, k = 0, \pm 1, \pm 2, \ldots$

2. Let A be defined as Ax(t) = tx(t) in $L^2(0, \infty)$. The operator A is bounded and its spectrum is continuous and equal $\sigma_c(A) = [0, \infty)$. (For the proof see Lecture 15).

Definition. Let $\overline{D(A)} = H$. An operator A is called symmetric if $(Ax, y) = (x, Ay) \forall x, y \in D(A)$.

It follows from the definition that $A \subset A^*$. Therefore A can be closed and in particular $\overline{A} = A^{**}$.

Home exercises.

1. Let $A_0 = \frac{1}{i} \frac{d}{dt}$ defined the class of functions $\{x : x \in C_0^{\infty}(\mathbb{R})\}$. Show that A_0 is symmetric and closable.

2. Let $A = \frac{1}{i} \frac{d}{dt}$ defined on $\{x : \int_{-1}^{1} (|x'(t)|^2 + |x(t)|^2) dt, \} \subset L^2(-1, 1)$ such that x(-1) = x(1). Show that A is self-adjoint.

3. Describe the closure of the class of functions $\{x : x \in C_0^{\infty}(\mathbb{R})\}$ with respect to

$$\int_{\mathbb{R}} |\mathbf{x}'(t)|^2 \, \mathrm{d} t.$$