LECTURE 14
RESOLVENT SET AND SPECTRUM

Let Ga = {(x,Ax), x € D(A)} C H & H be the graph of the operator A.
We define W: H@® H — H & H such that

W(x.h) = (—x, h), x,h € H.
Obviously W? = 1.

Theorem 1. IfD(A) = H, then (WGA)+ = Ga-.

Proof. The fact that (h,y) € H & H is orthogonal to WG implies
—(x,h) + (Ax,y) = 0. Thus (Ax,y) = (x,h) and by definition of the
adjoint operator we have y € D(A*) and h = A*y. O

Theorem 2. The operator A* is always closed.

Proof. Indeed, the orthogonal complement to a linear subspace is always
closed. Therefore Ga- = (WGA)+, which the graph of the operator A*, is
a closed set. U

Theorem 3. If D(A) = H. Then the condition D(A*) = H is equivalent to
A being closable. Moreover, in this case A** exists and A** = A.

Proof. By Theorem 1 and since W2 = I we obtain
1 TR
WG = W[WGa| = [W2GA| =Gx

Therefore
L
GNw:[w@kJ — G =Gy

Theorem 4. The subspaces R(A) and N(A*) are orthogonal in H and

H =R(A) & N(A™).
Proof. The element y € N(A*) if and only if (Ax,y) = O for all x €
D(A). This is equivalent toy € R(A). O
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1. SPECTRUM AND RESOLVENT OF A CLOSED OPERATOR

Let A be a closed operator in a Hilbert space H.

Definition. d = defA = dim [R(A)]* is called the defect of the operator
A.

Remark 1. By using Theorem 4 we immediately obtain that da =
dim N(A*).

Theorem 5. Let us assume that A is a closed operator such for some con-
stant C > 0 ||Ax|| > CJ|x|| for all x € D(A). Let B be an operator in H
such that D(A) C D(B) and for any x € D(A)

|Bx|| < a|Ax|, where, a<T.

Then

e A+ Bisclosed on D(A)
e [[(A+B)x| > (1—a)Clx]
[ J dA+B - dA.

Proof. The graph G4 is closed w.r.t. the norm |x|5 = ||x|| + ||Ax||. There-
fore by using the triangle inequality we have

(T = a)lxla < Ixlass < (1 + a)x[a.

Therefore the norms | - |4 and | - o, g — and thus since G 4 is closed then
G a4 is closed. This implies that A 4 B is closed. Now

I(A+B)x| > [|AX] — [IBx]| > (1 — @) Ax]| > (1 — a)C]x],

which proves the second statement of the theorem Assume for a moment
that dayg < da. Then there exists f € R(A)*, f # 0, such that f LR(A +
B)=L. This implies f € R(A + B) and therefore there exists y € D(A) s.t.
f = (A + B)y. Since f LR(A) we have (f,Ay) = 0.

IAY[1? = (Ay, Ay) = —(By, Ay) < [[Byll|Ay]l < al|Ay]l?,

which gives a contradiction.
If we assume that da + B > da, then we can find f = Ay, f # s.t.
fLR(A + B) and thus (f, (A 4+ B)y) = 0. Finally

|Ay||* = (Ay, Ay) = —(By, Ay) < ||By||||Ay| < a|Ay|*
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Corollary 1. Let A be an operator in H satisfying the condition ||Ax| >

C||x||, x € D(A) and let B be a bounded operator s.t. ||B|| < C. Then
dats = da.
Proof.
IBx|| < [IBJ[[[x[| < [B][C | Ax].
We now apply Theorem 5 with a = ||B||C~". O
Definition.

The defect of the operator A — Al is denoted by da(A) and called the
defect of A at A.
If A — Al has a bounded inverse on its image (A — AI)(H) (namely

(A —ADx| > C||x]|| for some C > O) then A is called a quasi-regular

point of A.
All such points are denoted by p(A).

Lemma 1. Let A be a closed operator in H such that (|A—AD)x|| > Col|x||
for some Cy > 0 and V'x € D(A). Then

D:={AcC:|A—Ao < ColCp(A)
and da(A) is constant on D.
Proof. If we write
A—A=(A—-A))+ (Ao—A)I
then we complete the proof by using Corollary 1. U
We now immediately obtain the following result:

Theorem 6. The set p(A) C C is open and the value of d A is constant on
each connected component of P(A).

Definition. If da(A) = O for some A € p(A), then A is called a regular
point of A. In this case the operator (A — AI)—1 is bounded.
The set of all regular points of A is called a resolvent set and denoted by

p(A).
Remark 2. The set p(A) is open.

Definitions.



e The set 0(A) = C\ p(A) is called the spectrum of theoperator A.

e G(A) =C\ p(A) is called the core of the spectrum.

e The set 0,(A) = {A € C: N(A — AI) # {0}} is called the point
spectrum of A and A € o, is called the eigenvalue of A.

e The set 0.(A) ={A € C: R(A — AlI) # R(A — Al)} is called the
continuous spectrum of A.

Example.

1. Let A = 1 4 defined on D(A) = {x : f]_1(\x’(t)\2 + [x(1)?) dt,} C
L2(—1,1). D(A) is a dense in L?(—1,1) set. Solutions of the equation
Ax = Axare x(t) = e*and 0,(A) =k, k=0,+1,4+2,....

2. Let A be defined as Ax(t) = tx(t) in L?(0,00). The operator Ais

bounded and its spectrum is continuous and equal o.(A) = [0, 00). (For
the proof see Lecture 15).

Definition. Let D(A) = H. An operator A is called symmetric if (Ax,y) =
(x,Ay) ¥x,y € D(A).

It follows from the definition that A C A*. Therefore A can be closed and
in particular A = A**,

Home exercises.

1. Let Ay = %% defined the class of functions {x : x € CF(R)}. Show
that A is symmetric and closable.

2. Let A = 1 & defined on {x : fll(lx’(t)l2 + x(1)]?) dt,} c LA(=1,1)

such that x(—1) = x(1). Show that A is self-adjoint.

3. Describe the closure of the class of functions {x : x € C3(R)} with
respect to

J x'(t)]? dt.
R



