LECTURE 13 POSITIVE OPERATORS \& UNBOUNDED OPERATORS

Theorem 1. Let A_{n} be a bounded monotone sequence of operators. Then $\left\{A_{n}\right\}$ is strongly convergent.

Proof. Assume, for example, that $\left.A_{n}\right\rangle$. Since sup ${ }_{n}\left\|A_{n}\right\|<\infty$ we obtain that for any $x \in H$ the sequence $\left(A_{n} x, x\right)$ is convergent. Therefore due to "polarisation"

$$
\left(A_{n} x, y\right)=\frac{1}{4}\left[\left(A_{n}(x+y), x+y\right)-\left(A_{n}(x-y), x-y\right)\right]
$$

we have that $\lim _{n}\left(A_{n} x, y\right)$ exists for any $x, y \in H$. Such a limit defines a self-adjoint bounded operator \mathcal{A} in H. Denote by $c=\sup _{n}\left\|A_{n}-\mathcal{A}\right\|$. Then by using Lemma 1 , Lecture 12, we find

$$
\left\|A_{n} x-A x\right\| \leq c\left[\left(A_{n} x, x\right)-(A x, x)\right] \rightarrow 0 \quad \forall x \in H
$$

Definition. A square root of a positive operator \mathcal{A} is a self-adjoint operator B such that $B^{2}=A$.

Theorem 2 (Av.Fr. 6.6.4). Every positive operator A has a unique positive square root B such that B commutes with any linear operator that commutes with A.

Proof. See Av.Fr. page 223.

Definition. Let A be a bounded operator. We define $|A|=\sqrt{A^{*} A}$.
Remark 1. - $|\lambda A|=|\lambda||A|$ if $\lambda \in \mathbb{C}$.

- In general $|A B|=|A||B|$ or $|A|=\left|A^{*}\right|$ is false.
- In general $|A+B| \leq|A|+|B|$ is not true.

Definition. A bounded operator U in H is called unitary if $\mathrm{UH}=\mathrm{H}$ and $\mathrm{U}^{*} \mathrm{U}=\mathrm{I}$, where I is the identity, $\mathrm{I} x=\mathrm{x}$.

Example. Let A be a shift operator in l^{2} such that $A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=$ $\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$. Then A^{*} could be defined by $A^{*}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=$ $\left(x_{2}, x_{3}, \ldots\right)$. Clearly $|A|=\sqrt{A^{*} A}=$ I. If the formula $A=U|A|$ would hold true for some unitary operator U, then U should be equal to A. However, A is not unitary since $(1,0,0, \ldots) \notin H$.

Definition. A bounded operator U is called isometry if $\|\mathrm{Ux}\|=\|x\|$ for all $x \in \mathrm{H}$. U is called a partial isometry if U is an isometry when restricted to $\left(\right.$ Ker U) ${ }^{\perp}$.

Theorem 3 (Polar decomposition). Let A be a bounded operator in H . There exists a partial isometry U such that $\mathrm{A}=\mathrm{U}|\mathrm{A}|$. The operator U is uniquely determined by the condition $\operatorname{Ker} \mathrm{U}=\operatorname{Ker} \mathrm{A}$.

Proof. Let U : Ran $|A| \rightarrow \operatorname{Ran} A$ such that $\mathrm{U}(|A| x)=A x$. Then

$$
\|A \mid x\|^{2}=\left(x,|A|^{2} x\right)=\left(x, A^{*} A x\right)=\|A x\|^{2} .
$$

Clearly $|\mathcal{A}| x=0$ is equivalent to $A x=0$ and therefore $\operatorname{Ker}|A|=\operatorname{Ker} A$ and thus $\operatorname{Ker} \mathrm{U}=\operatorname{Ker} \mathcal{A}$.

1. Unbounded operators

Let $A: H \rightarrow H$ be an operator in H with domain $D(A)$ and range $R(A):=A(H)$. By $N(A)$ we denote the kernel of the operator $A, N(A)=$ $\{x \in D(A): A x=0\}$.

The operator A is invertible if and only if $N(A)=0$. In this case $D\left(A^{-1}\right)=R(A)$ and $R\left(A^{-1}\right)=D(A)$.

The sesqui-linear form

$$
(x, y)_{A}=(x, y)+(A x, A y), \quad x, y \in D(A)
$$

define pre-Hilbert space (a space with a scalar product which is not necessary complete).

Theorem 4. The operator A has a bounded inverse if and only if there is a constant $\mathrm{c}>0$ such that $\|\mathrm{Ax}\|>\mathrm{c}\|\mathrm{x}\|$. The biggest possible constant c in the latter inequality is equal to $\left\|A^{-1}\right\|^{-1}$.

Proof. Let us point out that $\|A x\|>c\|x\|$ implies $N(A)=0$ and therefore A^{-1} exists. Let $y=A x$. Then $\|y\| \geq c\left\|A^{-1}\right\| y$ and thus $c^{-1}\|y\| \geq$ $\left\|A^{-1}\right\|\|y\|$, or $\left\|A^{-1}\right\| \leq c^{-1}$.

If A^{-1} exists and bounded then $\left\|A^{-1} y\right\| \leq c^{-1}\|A y\|$, where $c=$ $\left\|A^{-1}\right\|^{-1}$.

Definition. We say that two unbounded operators A_{1} and A_{2} are equal $A_{1}=A_{2}$ if $\mathrm{D}\left(A_{1}\right)=\mathrm{D}\left(A_{2}\right)$ and $A_{1} x=A_{2} x$ for any $x \in D\left(A_{1}\right)=$ $\mathrm{D}\left(\mathrm{A}_{2}\right)$.

If $D\left(A_{1}\right) \subset D\left(A_{2}\right)$ and $A_{1} x=A_{2} x$ for any $x \in D\left(A_{1}\right)$, then A_{2} is called an extension of A_{1}.

Let $G_{A}=\{(x, A x): x \in D(A)\} \subset H \oplus H$. The scalar product

$$
((x, A x),(y, A y)):=(x, y)+(A x, A y)
$$

define a pre-Hilbert structure in G_{A}.
Theorem 5. An operator A is closed iff G_{A} is closed in H and iff for any sequence $x_{n} \in D(A)$

$$
\lim _{n} x_{n}=x, \quad \lim _{n} A x_{n}=y \quad \Longrightarrow \quad x \in D(A) \quad \& \quad y=A x
$$

Proof. See Th. 4.7.1 Av.Fr.

2. ADJoint operators

Definition. Let A be a linear operator in H and let $\overline{D(A)}=H$. An element $y \in H$ is said to be in $D\left(A^{*}\right)$ if there exists h such that

$$
(A x, y)=(x, h), \quad \forall x \in D(A)
$$

In this case we define the adjoint operator A^{*} as $A^{*} y=h$ and thus $(A x, y)=\left(x A^{*} y\right)$.

If $\overline{D(A)} \neq \mathrm{H}$ then the element h is not unique and we are not able to define A^{*}.

Home exercises.

1. Show that an operator U is a partial isometry if and only if the operators $P_{1}=U^{*} U$ and $P_{2}=U U^{*}$ are projections.
2. (Av.Fr. \&.6.1) Find the positive square root of the operator $A x(t)=$ $a(t) x(t)$ in $L^{2}(0,1)$ assuming that $a(t) \geq 0$.
3. Prove that if $A \geq B \geq 0$, then $\sqrt{A} \geq \sqrt{B}$ (Heinz's inequality).
(Hint: $\quad(A+t I)^{-1} \geq(B+t I)^{-1}$ for any $\left.t>0\right)$.
