
LECTURE 13
POSITIVE OPERATORS & UNBOUNDED OPERATORS

Theorem 1. Let An be a bounded monotone sequence of operators. Then
{An} is strongly convergent.

Proof. Assume, for example, that An ↘. Since supn ‖An‖ < ∞ we obtain
that for any x ∈ H the sequence (Anx, x) is convergent. Therefore due to
”polarisation”

(Anx, y) =
1

4

[(
An(x + y), x + y

)
− (An(x − y), x − y

)]
we have that limn(Anx, y) exists for any x, y ∈ H. Such a limit defines
a self-adjoint bounded operator A in H. Denote by c = supn ‖An − A‖.
Then by using Lemma 1, Lecture 12, we find

‖Anx − Ax‖ ≤ c[(Anx, x) − (Ax, x)] → 0 ∀x ∈ H.

�

Definition. A square root of a positive operator A is a self-adjoint operator
B such that B2 = A.

Theorem 2 (Av.Fr. 6.6.4). Every positive operator A has a unique positive
square root B such that B commutes with any linear operator that commutes
with A.

Proof. See Av.Fr. page 223. �

Definition. Let A be a bounded operator. We define |A| =
√

A∗A.

Remark 1. • |λA| = |λ||A| if λ ∈ C.
• In general |AB| = |A||B| or |A| = |A∗| is false.
• In general |A + B| ≤ |A| + |B| is not true.

Definition. A bounded operator U in H is called unitary if UH = H and
U∗U = I, where I is the identity, Ix = x.
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Example. Let A be a shift operator in l2 such that A(x1, x2, x3, . . . ) =

(0, x1, x2, x3, . . . ). Then A∗ could be defined by A∗(x1, x2, x3, . . . ) =

(x2, x3, . . . ). Clearly |A| =
√

A∗A = I. If the formula A = U|A| would
hold true for some unitary operator U, then U should be equal to A. How-
ever, A is not unitary since (1, 0, 0, . . . ) 6∈ H.

Definition. A bounded operator U is called isometry if ‖Ux‖ = ‖x‖ for all
x ∈ H. U is called a partial isometry if U is an isometry when restricted to
(Ker U)⊥.

Theorem 3 (Polar decomposition). Let A be a bounded operator in H.
There exists a partial isometry U such that A = U|A|. The operator U is
uniquely determined by the condition Ker U = Ker A.

Proof. Let U : Ran |A| → Ran A such that U(|A|x) = Ax. Then

‖|A|x‖2 = (x, |A|2x) = (x,A∗Ax) = ‖Ax‖2.

Clearly |A|x = 0 is equivalent to Ax = 0 and therefore Ker |A| = Ker A

and thus Ker U = Ker A. �

1. UNBOUNDED OPERATORS

Let A : H → H be an operator in H with domain D(A) and range
R(A) := A(H). By N(A) we denote the kernel of the operator A, N(A) =

{x ∈ D(A) : Ax = 0}.
The operator A is invertible if and only if N(A) = 0. In this case

D(A−1) = R(A) and R(A−1) = D(A).
The sesqui-linear form

(x, y)A = (x, y) + (Ax,Ay), x, y ∈ D(A),

define pre-Hilbert space (a space with a scalar product which is not neces-
sary complete).

Theorem 4. The operator A has a bounded inverse if and only if there is a
constant c > 0 such that ‖Ax‖ > c‖x‖. The biggest possible constant c in
the latter inequality is equal to ‖A−1‖−1.

Proof. Let us point out that ‖Ax‖ > c‖x‖ implies N(A) = 0 and therefore
A−1 exists. Let y = Ax. Then ‖y‖ ≥ c‖A−1‖y and thus c−1‖y‖ ≥
‖A−1‖‖y‖, or ‖A−1‖ ≤ c−1.

If A−1 exists and bounded then ‖A−1y‖ ≤ c−1‖Ay‖, where c =

‖A−1‖−1. �
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Definition. We say that two unbounded operators A1 and A2 are equal
A1 = A2 if D(A1) = D(A2) and A1x = A2x for any x ∈ D(A1) =

D(A2).
If D(A1) ⊂ D(A2) and A1x = A2x for any x ∈ D(A1), then A2 is

called an extension of A1.
Let GA = {(x,Ax) : x ∈ D(A)} ⊂ H⊕H. The scalar product(

(x,Ax), (y,Ay)
)

:= (x, y) + (Ax,Ay)

define a pre-Hilbert structure in GA.

Theorem 5. An operator A is closed iff GA is closed in H and iff for any
sequence xn ∈ D(A)

lim
n

xn = x, lim
n

Axn = y =⇒ x ∈ D(A) & y = Ax.

Proof. See Th. 4.7.1 Av.Fr. �

2. ADJOINT OPERATORS

Definition. Let A be a linear operator in H and let D(A) = H. An element
y ∈ H is said to be in D(A∗) if there exists h such that

(Ax, y) = (x, h), ∀x ∈ D(A).

In this case we define the adjoint operator A∗ as A∗y = h and thus
(Ax, y) = (xA∗y).

If D(A) 6= H then the element h is not unique and we are not able to
define A∗.

Home exercises.

1. Show that an operator U is a partial isometry if and only if the operators
P1 = U∗U and P2 = UU∗ are projections.

2. (Av.Fr. &.6.1) Find the positive square root of the operator Ax(t) =

a(t)x(t) in L2(0, 1) assuming that a(t) ≥ 0.

3. Prove that if A ≥ B ≥ 0, then
√

A ≥
√

B (Heinz’s inequality).
(Hint: (A + tI)−1 ≥ (B + tI)−1 for any t > 0).


