LECTURE 13 POSITIVE OPERATORS & UNBOUNDED OPERATORS

Theorem 1. Let A_n be a bounded monotone sequence of operators. Then $\{A_n\}$ is strongly convergent.

Proof. Assume, for example, that $A_n \searrow$. Since $\sup_n ||A_n|| < \infty$ we obtain that for any $x \in H$ the sequence $(A_n x, x)$ is convergent. Therefore due to "polarisation"

$$(A_n x, y) = \frac{1}{4} \left[\left(A_n (x + y), x + y \right) - (A_n (x - y), x - y) \right]$$

we have that $\lim_{n}(A_{n}x, y)$ exists for any $x, y \in H$. Such a limit defines a self-adjoint bounded operator A in H. Denote by $c = \sup_{n} ||A_{n} - A||$. Then by using Lemma 1, Lecture 12, we find

$$\|A_n x - A x\| \le c[(A_n x, x) - (A x, x)] \to 0 \qquad \forall x \in H.$$

Definition. A square root of a positive operator A is a self-adjoint operator B such that $B^2 = A$.

Theorem 2 (Av.Fr. 6.6.4). *Every positive operator* A *has a unique positive square root* B *such that* B *commutes with any linear operator that commutes with* A.

Proof. See Av.Fr. page 223.

Definition. Let A be a bounded operator. We define $|A| = \sqrt{A^*A}$.

Remark 1. • $|\lambda A| = |\lambda||A|$ if $\lambda \in \mathbb{C}$.

- In general |AB| = |A||B| or $|A| = |A^*|$ is false.
- In general $|A + B| \le |A| + |B|$ is not true.

Definition. A bounded operator U in H is called unitary if UH = H and $U^*U = I$, where I is the identity, Ix = x.

Example. Let A be a shift operator in l^2 such that $A(x_1, x_2, x_3, ...) = (0, x_1, x_2, x_3, ...)$. Then A* could be defined by $A^*(x_1, x_2, x_3, ...) = (x_2, x_3, ...)$. Clearly $|A| = \sqrt{A^*A} = I$. If the formula A = U|A| would hold true for some unitary operator U, then U should be equal to A. However, A is not unitary since $(1, 0, 0, ...) \notin H$.

Definition. A bounded operator U is called isometry if ||Ux|| = ||x|| for all $x \in H$. U is called a partial isometry if U is an isometry when restricted to $(\text{Ker } U)^{\perp}$.

Theorem 3 (Polar decomposition). Let A be a bounded operator in H. There exists a partial isometry U such that A = U|A|. The operator U is uniquely determined by the condition Ker U = Ker A.

Proof. Let U : Ran $|A| \rightarrow$ Ran A such that U(|A|x) = Ax. Then

 $||A|x||^2 = (x, |A|^2x) = (x, A^*Ax) = ||Ax||^2.$

Clearly |A|x = 0 is equivalent to Ax = 0 and therefore Ker|A| = Ker A and thus Ker U = Ker A.

1. UNBOUNDED OPERATORS

Let $A : H \to H$ be an operator in H with domain D(A) and range R(A) := A(H). By N(A) we denote the kernel of the operator A, $N(A) = \{x \in D(A) : Ax = 0\}$.

The operator A is invertible if and only if N(A) = 0. In this case $D(A^{-1}) = R(A)$ and $R(A^{-1}) = D(A)$.

The sesqui-linear form

$$(\mathbf{x},\mathbf{y})_{\mathbf{A}} = (\mathbf{x},\mathbf{y}) + (\mathbf{A}\mathbf{x},\mathbf{A}\mathbf{y}), \qquad \mathbf{x},\mathbf{y} \in \mathsf{D}(\mathbf{A}),$$

define pre-Hilbert space (a space with a scalar product which is not necessary complete).

Theorem 4. The operator A has a bounded inverse if and only if there is a constant c > 0 such that ||Ax|| > c||x||. The biggest possible constant c in the latter inequality is equal to $||A^{-1}||^{-1}$.

Proof. Let us point out that ||Ax|| > c||x|| implies N(A) = 0 and therefore A^{-1} exists. Let y = Ax. Then $||y|| \ge c||A^{-1}|||y|$ and thus $c^{-1}||y|| \ge ||A^{-1}|||y||$, or $||A^{-1}|| \le c^{-1}$.

If A^{-1} exists and bounded then $||A^{-1}y|| \leq c^{-1}||Ay||$, where $c = ||A^{-1}||^{-1}$.

Definition. We say that two unbounded operators A_1 and A_2 are equal $A_1 = A_2$ if $D(A_1) = D(A_2)$ and $A_1x = A_2x$ for any $x \in D(A_1) = D(A_2)$.

If $D(A_1) \subset D(A_2)$ and $A_1x = A_2x$ for any $x \in D(A_1)$, then A_2 is called an extension of A_1 .

Let $G_A = \{(x,Ax): \, x \in D(A)\} \subset H \oplus H.$ The scalar product

$$((\mathbf{x}, \mathbf{A}\mathbf{x}), (\mathbf{y}, \mathbf{A}\mathbf{y})) := (\mathbf{x}, \mathbf{y}) + (\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y})$$

define a pre-Hilbert structure in G_A .

Theorem 5. An operator A is closed iff G_A is closed in H and iff for any sequence $x_n \in D(A)$

$$\lim_{n} x_{n} = x, \quad \lim_{n} Ax_{n} = y \implies x \in D(A) \quad \& \quad y = Ax.$$
Proof. See Th. 4.7.1 Av.Fr.

2. Adjoint operators

Definition. Let A be a linear operator in H and let $\overline{D(A)} = H$. An element $y \in H$ is said to be in $D(A^*)$ if there exists h such that

$$(Ax, y) = (x, h), \quad \forall x \in D(A).$$

In this case we define the adjoint operator A^* as $A^*y = h$ and thus $(Ax, y) = (xA^*y)$.

If $D(A) \neq H$ then the element h is not unique and we are not able to define A^* .

Home exercises.

1. Show that an operator U is a partial isometry if and only if the operators $P_1 = U^*U$ and $P_2 = UU^*$ are projections.

2. (Av.Fr. &.6.1) Find the positive square root of the operator Ax(t) = a(t)x(t) in $L^2(0, 1)$ assuming that $a(t) \ge 0$.

3. Prove that if $A \ge B \ge 0$, then $\sqrt{A} \ge \sqrt{B}$ (Heinz's inequality). (Hint: $(A + tI)^{-1} \ge (B + tI)^{-1}$ for any t > 0).