LECTURE 12

COMPACT \& BOUNDED OPERATORS IN HILBERT SPACE

1. Finite rank operators

Definition. T is said to be of rank $\mathrm{r}(\mathrm{r}<\infty)$ if $\operatorname{dim} \mathrm{T}(\mathrm{H})=\mathrm{r}$. The class of operators of rank r is denoted by K_{r} and $K:=\cup_{r} K_{r}$.

Theorem 1. $T \in K_{r}$ iff $T^{*} \in K_{r}$.
Proof. Let $\mathrm{T} \in \mathrm{K}_{\mathrm{r}}$ and let $\mathfrak{u}_{1}, \mathfrak{u}_{2}, \ldots, \mathfrak{u}_{\mathrm{r}}$ be an orthonormal basis in $\mathrm{T}(\mathrm{H})$. Then for any $x \in H$ we have

$$
T x=\sum_{k=1}^{r}\left(T x, u_{k}\right) u_{k}=\sum_{k=1}^{r}\left(x, T^{*} u_{k}\right) u_{k} .
$$

Denote $v_{k}=\mathrm{T}^{*} \mathfrak{u}_{\mathrm{k}}$, then $\mathrm{T}=\sum_{k=1}^{r}\left(\cdot, v_{k}\right) \mathfrak{u}_{\mathrm{k}}$. Moreover

$$
(T x, y)=\sum_{k=1}^{r}\left(\left(x, v_{k}\right) u_{k}, y\right)=\sum_{k=1}^{r}\left(x,\left(y, u_{k}\right) v_{k}\right)=\left(x, T^{*} y\right)
$$

Therefore $\mathrm{T}=\sum_{\mathrm{k}=1}^{\mathrm{r}}\left(\cdot, \mathfrak{u}_{\mathrm{k}}\right) v_{\mathrm{k}}$ and thus $\mathrm{T}^{*} \in \mathrm{~K}_{\mathrm{r}}$.
Theorem 2. The uniform closure of the class of finite rank operators K coincides with S_{∞}.

Proof. Let $\mathrm{T} \in \mathrm{S}_{\infty}$. Then T maps the set $\mathrm{B}=\{\mathrm{x}:\|\mathrm{x}\| \leq 1\}$ onto a relatively compact set. For any $\varepsilon>0$ there exists a finite set of elements $\left\{y_{k}\right\}_{k=1}^{r}$ such that for any $y \in T(B)$ we have $\min \left\|y-y_{k}\right\| \leq \varepsilon$. Let P be the projection on the subspace spanned by y_{k}. Clearly rank $\mathrm{P} \leq \mathrm{r}$. Thus for any x s.t. $\|x\| \leq 1$ we obtain

$$
\|\mathrm{T} x-\mathrm{PT}\|\left\|\leq \min _{\mathrm{k}}\right\| \mathrm{T} x-\mathrm{y}_{\mathrm{k}} \| \leq \varepsilon
$$

Remark 1. Uniform closure cannot be replaced by the strong closure.
Theorem 3. The strong closure of $\mathrm{K}(\mathrm{H})$ coincides with the class of all bounded operators.

Proof. Let $\left\{\mathcal{u}_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis in H and let P_{n} be the projectors on the subspaces spanned by $\left\{u_{k}\right\}_{k=1}^{\eta}$. Then for any $x \in H,\left\|P_{n} x-x\right\| \rightarrow 0$ which means that $s-\lim P_{n}=I$. Thus $s-\lim P_{n} T=T$ for any bounded operator T .

2. Integral Operators

Theorem 4. Let $\mathrm{K}: \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega), \Omega \in \mathbb{R}$, be an integral operator

$$
K f(x)=\int_{\Omega} K(x, y) f(y) d y
$$

such that

$$
\int_{\Omega} \int_{\Omega}|K(x, y)|^{2} d x d y<\infty
$$

Then K is compact.
Proof. Let $\left\{u_{j}\right\}_{j=1}^{\infty}$ be an orthonormal basis in $L^{2}(\Omega)$. Then

$$
K(x, y)=\sum_{j=1}^{\infty} K_{j}(y) u_{j}(x), \quad \text { where } \quad K_{j}(y)=\int_{\Omega} K(x, y) \overline{\mathfrak{u}_{j}(x)} d x
$$

for almost all y. Due to the Parseval identity we have for almost all y

$$
\int_{\Omega}|K(x, y)|^{2} d x=\sum_{j=1}^{\infty}\left|K_{j}(y)\right|^{2}
$$

and

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega}|K(x, y)|^{2} d x d y=\sum_{j=1}^{\infty} \int_{\Omega}\left|K_{j}(y)\right|^{2} d y \tag{1}
\end{equation*}
$$

We now define the following operator of rank N

$$
K_{N} f(x)=\int_{\Omega} K_{N}(x, y) f(y) d y
$$

where $K_{N}(x, y)=\sum_{j=1}^{N} K_{j}(y) u_{j}(x)$. By Cauchy-Schwartz inequality we obtain

$$
\begin{aligned}
&\left\|\left(K-K_{N}\right) f\right\|^{2}=\int_{\Omega}\left|\int_{\Omega}\left(K(x, y)-K_{N}(x, y)\right) f(y) d y\right|^{2} d x \\
& \leq \int_{\Omega} \int_{\Omega}\left|K(x, y)-K_{N}(x, y)\right|^{2} d x d y\|f\|^{2}
\end{aligned}
$$

Thus by using that the right hand side in (1) is absolutely convergent, we find

$$
\begin{aligned}
\|(\mathrm{K} & \left.-\mathrm{K}_{\mathrm{N}}\right) \|^{2} \leq \int_{\Omega} \int_{\Omega}\left|\mathrm{K}(\mathrm{x}, \mathrm{y})-\mathrm{K}_{\mathrm{N}}(\mathrm{x}, \mathrm{y})\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
= & \int_{\Omega} \int_{\Omega}|\mathrm{K}(\mathrm{x}, \mathrm{y})|^{2} \mathrm{~d} x \mathrm{~d} y-\int_{\Omega} \int_{\Omega} \mathrm{K}(\mathrm{x}, \mathrm{y}) \sum_{\mathrm{j}=1}^{\mathrm{N}} \overline{\mathrm{~K}_{j}(\mathrm{y}) \mathfrak{u}_{j}(x)} \mathrm{d} x \mathrm{~d} y \\
& -\int_{\Omega} \int_{\Omega} \overline{\mathrm{K}(\mathrm{x}, \mathrm{y})} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{~K}_{j}(\mathrm{y}) \mathfrak{u}_{j}(\mathrm{x}) \mathrm{d} x \mathrm{~d} y+\sum_{j=1}^{N} \int_{\Omega}\left|\mathrm{K}_{j}(\mathrm{y})\right|^{2} \mathrm{~d} y \\
= & \int_{\Omega} \int_{\Omega}|\mathrm{K}(\mathrm{x}, \mathrm{y})|^{2} \mathrm{~d} x \mathrm{~d} y-\sum_{j=1}^{N} \int_{\Omega}\left|\mathrm{K}_{\mathrm{j}}(\mathrm{y})\right|^{2} \mathrm{~d} y \rightarrow 0, \quad \text { as } \quad \mathrm{N} \rightarrow \infty .
\end{aligned}
$$

3. Bounded Self-adjoint Operators

Definition. A bounded operator T : H $\rightarrow \mathrm{H}$ is said to be self-adjoint if $\forall x, y \in H$

$$
(T x, y)=(x, T y), \quad\left(A=A^{*}\right)
$$

Theorem 5 (Av.Fr. 6.5.1). Let T : be a bounded self-adjoint operator in a Hilbert space H . Then

$$
\|T\|=\sup _{\|x\|=1}|(T x, x)| .
$$

Proof. Clearly if $\|x\|=1$, then

$$
|(T x, x)| \leq\|T x\|\|x\|=\|T x\| \leq\|T\|
$$

and therefore $\sup _{\|x\|=1}|(T x, x)| \leq\|T\|$.
In order to proof the inverse inequality we consider $z \in \mathrm{H},\|z\|=1$, $\mathrm{T}_{z} \neq 0$ and $u=\mathrm{T}_{z} / \lambda$, where $\lambda=\left\|\mathrm{T}_{z}\right\|^{1 / 2}$. If we denote by $\alpha:=$ $\sup _{\|x\|=1}|(T x, x)|$, then

$$
\begin{aligned}
&\|\mathrm{T} z\|^{2}=(\mathrm{T}(\lambda z), \mathrm{u})=\frac{1}{4}[(\mathrm{~T}(\lambda z+u), \lambda z+u)-(\mathrm{T}(\lambda z-u), \lambda z-u)] \\
& \leq \frac{\alpha}{4}\left[\|\lambda z+u\|^{2}+\|\lambda z-u\|^{2}\right]= \\
& \frac{\alpha}{2}\left[\|\lambda z\|^{2}+\|u\|^{2}\right] \\
& \frac{\alpha}{2}\left[\|\lambda\|^{2}+\|\mathrm{T} z\|\right]=\alpha\|\mathrm{T} z\| .
\end{aligned}
$$

This implies that for any $z \in H,\|z\|=1$ we have $\|T z\| \leq \alpha$ and hence $\|T\| \leq \alpha=\sup _{\|x\|=1}|(T x, x)|$.

Definition. If $T x=\lambda x, x \in H, x \neq 0$, then x is called an eigenvector and λ is called an eigenvalue for the operator T .

Theorem 6 (Av.Fr. 6.5.2). Let $\left\{\lambda_{j}\right\}$ and $\left\{\mathrm{x}_{\mathrm{j}}\right\}$ be eigenvalues and eigenvectors for a self-adjoint operator T in H . Then

- All λ_{j} are real.
- If $\lambda_{j} \neq \lambda_{k}$ then the corresponding eigenvectors x_{j} and x_{k} are orthogonal.

Proof. Let Tx $=\lambda x$. Then

$$
\lambda\|x\|^{2}=(T x, x)=(x, T x)=\overline{(T x, x)}=\bar{\lambda}\|x\|^{2} .
$$

Let now $T y=\mu y, \lambda \neq \mu$. Then since T is self-adjoint we have

$$
0=(T x, y)-(x, T y)=\lambda(x, y)-\mu(x, y)=(\lambda-\mu)(x, y) .
$$

Theorem 7. Let T_{1} and T_{2} be two bounded self-adjoint operators. The product $\mathrm{T}:=\mathrm{T}_{1} \mathrm{~T}_{2}$ is self-adjoint iff the operators T_{1} and T_{2} commute $\left(\mathrm{T}_{1} \mathrm{~T}_{2}=\mathrm{T}_{2} \mathrm{~T}_{1}\right)$.

Proof.

$$
\mathrm{T}^{*}=\mathrm{T}_{2}^{*} \mathrm{~T}_{1}^{*}=\mathrm{T}_{2} \mathrm{~T}_{1}=\mathrm{T}_{1} \mathrm{~T}_{2}=\mathrm{T} .
$$

Definition.

- A bounded operator T in H is called positive $(\mathrm{T} \geq 0)$ if for any $x \in H,(T x, x) \geq 0$.
- A bounded operator T in H is called strictly positive $(\mathrm{T}>0)$ if for any $x \in H,(T x, x)>0$.
- A bounded operator T in H is called positive definite if there exist a positive constant $m>0$ such that

$$
(\mathrm{T} x, x) \geq \mathfrak{m}\|x\|^{2}, \quad \forall x \in H .
$$

If T is positive then we can define an inner product $\langle x, y\rangle=(\mathrm{T} x, y)$. The the Schwartz inequality gives us
(2) $\left.\quad(T x, y)^{2}=<x, y\right\rangle^{2} \leq\langle x, x\rangle<y, y>=(T x, x)(T y, y)$.

Lemma 1. If $\mathrm{T} \geq 0$ then $\|\mathrm{T}\|^{2} \leq\|\mathrm{T}\|(\mathrm{T} x, x)$.
Proof.

$$
(T x, y)^{2} \leq(T x, x)(T y, y) \leq(T x, x)\|T\|\|y\|^{2} .
$$

The proof is complete if we substitute into the latter inequality $y=T x$.

Definition. We say that $B \geq A$ if $B-A \geq 0$.
For any bounded operator T there exist two unique self-adjoint operators A and B such that $T=A+i B$. Then $T^{*}=A-i B$ and the operators A and B could be found via

$$
A=\frac{T+T^{*}}{2}, \quad B=\frac{T-T^{*}}{2 i} .
$$

It is clearly that $\mathrm{T}^{*} \mathrm{~T} \geq 0$ and $\mathrm{T}^{*} \geq 0$. The operators T and T^{*} do not always commute.

Definition. If $\mathrm{T}^{*} \mathrm{~T}=\mathrm{T}^{*}$ then T is called normal.

Home exercises.

1. Let $l^{2}=\left\{x=\left\{x_{j}\right\}_{j=1}^{\infty}, x_{j} \in \mathbb{C}: \sum_{j}|x|^{2}<\infty\right\}$. Define $T: l^{2} \rightarrow l^{2}$ such that

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)
$$

Show that $\mathrm{T}^{*} \mathrm{~T} \neq \mathrm{TT}^{*}$.
2. Let P_{L} and P_{M} be two projectors on the the subspaces $L, M \subset H$. Show that $\mathrm{P}_{\mathrm{L}} \leq \mathrm{P}_{\mathrm{M}}$ iff $\mathrm{L} \subset M$.

