LECTURE 12 COMPACT & BOUNDED OPERATORS IN HILBERT SPACE

1. FINITE RANK OPERATORS

Definition. T is said to be of rank r ($r < \infty$) if dim T(H) = r. The class of operators of rank r is denoted by K_r and K := $\bigcup_r K_r$.

Theorem 1. $T \in K_r$ *iff* $T^* \in K_r$.

Proof. Let $T \in K_r$ and let u_1, u_2, \ldots, u_r be an orthonormal basis in T(H). Then for any $x \in H$ we have

$$\mathsf{T} \mathsf{x} = \sum_{k=1}^{r} (\mathsf{T} \mathsf{x}, \mathfrak{u}_k) \mathfrak{u}_k = \sum_{k=1}^{r} (\mathsf{x}, \mathsf{T}^* \mathfrak{u}_k) \mathfrak{u}_k.$$

Denote $v_k = T^* u_k$, then $T = \sum_{k=1}^r (\cdot, v_k) u_k$. Moreover

$$(\mathsf{T} x, y) = \sum_{k=1}^{r} ((x, v_k) u_k, y) = \sum_{k=1}^{r} (x, (y, u_k) v_k) = (x, \mathsf{T}^* y).$$

Therefore $T = \sum_{k=1}^r (\cdot, u_k) v_k$ and thus $T^* \in K_r.$

Theorem 2. The uniform closure of the class of finite rank operators K coincides with S_{∞} .

Proof. Let $T \in S_{\infty}$. Then T maps the set $B = \{x : ||x|| \le 1\}$ onto a relatively compact set. For any $\varepsilon > 0$ there exists a finite set of elements $\{y_k\}_{k=1}^r$ such that for any $y \in T(B)$ we have min $||y - y_k|| \le \varepsilon$. Let P be the projection on the subspace spanned by y_k . Clearly rank $P \le r$. Thus for any x s.t. $||x|| \le 1$ we obtain

$$\|\mathsf{T} \mathsf{x} - \mathsf{P} \mathsf{T} \mathsf{x}\| \le \min_{k} \|\mathsf{T} \mathsf{x} - \mathsf{y}_{k}\| \le \varepsilon.$$

Remark 1. Uniform closure cannot be replaced by the strong closure.

Theorem 3. The strong closure of K(H) coincides with the class of all bounded operators.

Proof. Let $\{u_k\}_{k=1}^{\infty}$ be an orthonormal basis in H and let P_n be the projectors on the subspaces spanned by $\{u_k\}_{k=1}^n$. Then for any $x \in H$, $||P_n x - x|| \to 0$ which means that s-lim $P_n = I$. Thus s-lim $P_n T = T$ for any bounded operator T.

2. INTEGRAL OPERATORS

Theorem 4. Let $K : L^2(\Omega) \to L^2(\Omega)$, $\Omega \in \mathbb{R}$, be an integral operator

$$Kf(x) = \int_{\Omega} K(x, y) f(y) \, dy,$$

such that

$$\int_{\Omega}\int_{\Omega}|K(x,y)|^2\,dxdy<\infty.$$

Then K is compact.

Proof. Let $\{u_j\}_{j=1}^{\infty}$ be an orthonormal basis in $L^2(\Omega)$. Then

$$K(x,y) = \sum_{j=1}^{\infty} K_j(y) u_j(x), \quad \text{where} \quad K_j(y) = \int_{\Omega} K(x,y) \overline{u_j(x)} \, dx$$

for almost all y. Due to the Parseval identity we have for almost all y

$$\int_{\Omega} |K(x,y)|^2 dx = \sum_{j=1}^{\infty} |K_j(y)|^2$$

and

(1)
$$\int_{\Omega} \int_{\Omega} |K(x,y)|^2 dx dy = \sum_{j=1}^{\infty} \int_{\Omega} |K_j(y)|^2 dy.$$

We now define the following operator of rank N

$$K_{N}f(x) = \int_{\Omega} K_{N}(x, y)f(y) \, dy,$$

where $K_N(x,y) = \sum_{j=1}^N K_j(y) u_j(x).$ By Cauchy-Schwartz inequality we obtain

$$\begin{split} \|(K - K_N)f\|^2 &= \int_{\Omega} \Big| \int_{\Omega} \Big(K(x, y) - K_N(x, y) \Big) f(y) \, dy \Big|^2 dx \\ &\leq \int_{\Omega} \int_{\Omega} |K(x, y) - K_N(x, y)|^2 \, dx dy \, \|f\|^2 \end{split}$$

Thus by using that the right hand side in (1) is absolutely convergent, we find

$$\begin{split} \|(K - K_N)\|^2 &\leq \int_{\Omega} \int_{\Omega} |K(x, y) - K_N(x, y)|^2 \, dx \, dy \\ &= \int_{\Omega} \int_{\Omega} |K(x, y)|^2 \, dx \, dy - \int_{\Omega} \int_{\Omega} K(x, y) \sum_{j=1}^N \overline{K_j(y) u_j(x)} \, dx \, dy \\ &- \int_{\Omega} \int_{\Omega} \overline{K(x, y)} \sum_{j=1}^N K_j(y) u_j(x) \, dx \, dy + \sum_{j=1}^N \int_{\Omega} |K_j(y)|^2 \, dy \\ &= \int_{\Omega} \int_{\Omega} |K(x, y)|^2 \, dx \, dy - \sum_{j=1}^N \int_{\Omega} |K_j(y)|^2 \, dy \to 0, \quad \text{as} \quad N \to \infty. \end{split}$$

3. BOUNDED SELF-ADJOINT OPERATORS

Definition. A bounded operator $T : H \rightarrow H$ is said to be self-adjoint if $\forall x, y \in H$

$$(\mathsf{T} \mathsf{x}, \mathsf{y}) = (\mathsf{x}, \mathsf{T} \mathsf{y}), \qquad (\mathsf{A} = \mathsf{A}^*).$$

Theorem 5 (Av.Fr. 6.5.1). Let T : be a bounded self-adjoint operator in a Hilbert space H. Then

$$\|T\| = \sup_{\|x\|=1} |(Tx, x)|.$$

Proof. Clearly if ||x|| = 1, then

$$|(Tx, x)| \le ||Tx|| ||x|| = ||Tx|| \le ||T||$$

and therefore $\sup_{\|x\|=1} |(Tx, x)| \le \|T\|$. In order to proof the inverse inequality we consider $z \in H$, $\|z\| = 1$, $Tz \neq 0$ and $u = Tz/\lambda$, where $\lambda = ||Tz||^{1/2}$. If we denote by $\alpha :=$ $\sup_{\|x\|=1}|(Tx,x)|,$ then

This implies that for any $z \in H$, ||z|| = 1 we have $||Tz|| \le \alpha$ and hence $||T|| \le \alpha = \sup_{||x||=1} |(Tx, x)|$.

Definition. If $Tx = \lambda x$, $x \in H$, $x \neq 0$, then x is called an eigenvector and λ is called an eigenvalue for the operator T.

Theorem 6 (Av.Fr. 6.5.2). Let $\{\lambda_j\}$ and $\{x_j\}$ be eigenvalues and eigenvectors for a self-adjoint operator T in H. Then

- All λ_j are real.
- If $\lambda_j \neq \lambda_k$ then the corresponding eigenvectors x_j and x_k are orthogonal.

Proof. Let $Tx = \lambda x$. Then

$$\lambda \|\mathbf{x}\|^2 = (\mathsf{T}\mathbf{x}, \mathbf{x}) = (\mathbf{x}, \mathsf{T}\mathbf{x}) = \overline{(\mathsf{T}\mathbf{x}, \mathbf{x})} = \overline{\lambda} \|\mathbf{x}\|^2.$$

Let now Ty = μ y, $\lambda \neq \mu$. Then since T is self-adjoint we have

$$0 = (\mathsf{T} \mathsf{x}, \mathsf{y}) - (\mathsf{x}, \mathsf{T} \mathsf{y}) = \lambda(\mathsf{x}, \mathsf{y}) - \mu(\mathsf{x}, \mathsf{y}) = (\lambda - \mu)(\mathsf{x}, \mathsf{y}).$$

Theorem 7. Let T_1 and T_2 be two bounded self-adjoint operators. The product $T := T_1T_2$ is self-adjoint iff the operators T_1 and T_2 commute $(T_1T_2 = T_2T_1)$.

Proof.

$$T^* = T_2^* T_1^* = T_2 T_1 = T_1 T_2 = T.$$

-			
г		_	
L			L
-	_		

Definition.

- A bounded operator T in H is called positive (T \geq 0) if for any $x \in H$, (Tx, x) \geq 0.
- A bounded operator T in H is called strictly positive (T > 0) if for any x ∈ H, (Tx, x) > 0.
- A bounded operator T in H is called positive definite if there exist a positive constant m > 0 such that

$$(\mathsf{T}\mathbf{x},\mathbf{x}) \ge \mathfrak{m} \|\mathbf{x}\|^2, \qquad \forall \mathbf{x} \in \mathsf{H}.$$

4

If T is positive then we can define an inner product $\langle x, y \rangle = (Tx, y)$. The the Schwartz inequality gives us

(2)
$$(Tx,y)^2 = \langle x, y \rangle^2 \leq \langle x, x \rangle \langle y, y \rangle = (Tx,x)(Ty,y).$$

Lemma 1. *If* $T \ge 0$ *then* $||Tx||^2 \le ||T||(Tx, x)$.

Proof.

$$(\mathsf{T} \mathsf{x}, \mathsf{y})^2 \leq (\mathsf{T} \mathsf{x}, \mathsf{x})(\mathsf{T} \mathsf{y}, \mathsf{y}) \leq (\mathsf{T} \mathsf{x}, \mathsf{x}) \|\mathsf{T}\| \|\mathsf{y}\|^2$$

The proof is complete if we substitute into the latter inequality y = Tx. \Box

Definition. We say that $B \ge A$ if $B - A \ge 0$.

For any bounded operator T there exist two unique self-adjoint operators A and B such that T = A + iB. Then $T^* = A - iB$ and the operators A and B could be found via

$$A = \frac{T + T^*}{2}, \qquad B = \frac{T - T^*}{2i}.$$

It is clearly that $T^*T \ge 0$ and $TT^* \ge 0$. The operators T and T* do not always commute.

Definition. If $T^*T = TT^*$ then T is called normal.

Home exercises.

1. Let $l^2 = \left\{ x = \{x_j\}_{j=1}^{\infty}, x_j \in \mathbb{C} : \sum_j |x|^2 < \infty \right\}$. Define $T : l^2 \to l^2$ such that

$$T(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots).$$

Show that $T^*T \neq TT^*$.

2. Let P_L and P_M be two projectors on the subspaces $L, M \subset H$. Show that $P_L \leq P_M$ *iff* $L \subset M$.