LECTURE 12
COMPACT & BOUNDED OPERATORS IN HILBERT SPACE

1. FINITE RANK OPERATORS

Definition. T is said to be of rank r (r < 00) if dim T(H) = r. The class of
operators of rank 1 is denoted by K, and K := U, K.

Theorem 1. T € K, iff T* € K..

Proof. Let T € K, and let uy,uy,...,u, be an orthonormal basis in T(H).
Then for any x € H we have

T T

Tx = Z(Tx,uk)uk = Z(x, T u )uy.

k=1 k=1

Denote v, = T*uy, then T = Y (-, vi.)ux. Moreover

(T ) =D ((xvidwey) = D (x, (y, wdvi) = (x, Ty).
k=1 k=1
Therefore T = ) (-, ui)vy and thus T* € K. O

Theorem 2. The uniform closure of the class of finite rank operators K
coincides with S.

Proof. Let T € S.. Then T maps the set B = {x : |x|]| < 1} onto a
relatively compact set. For any ¢ > 0 there exists a finite set of elements
{YxJr—q such that for any y € T(B) we have min ||y — yi|| < €. Let P be
the projection on the subspace spanned by yy. Clearly rank P < r. Thus for
any x s.t. [|x|| < 1 we obtain

ITx — PTx|| < mkin||Tx—yk|| < e.

Remark 1. Uniform closure cannot be replaced by the strong closure.

Theorem 3. The strong closure of K(H) coincides with the class of all
bounded operators.
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Proof. Let {uy}%2 ; be an orthonormal basis in H and let P, be the projectors
on the subspaces spanned by {u}}>_;. Then for any x € H, ||Pax —x|| — 0
which means that s-limP, = [. Thus s-limP,T = T for any bounded
operator T. U

2. INTEGRAL OPERATORS

Theorem 4. Let K : L?(Q) — L?(Q), Q € R, be an integral operator

Kf(x) = jQK(x,y)f(y) ay,

such that
J J K(x,y)[? dxdy < co.
alJo

Then K is compact.

Proof. Let {u;}$2; be an orthonormal basis in L%(Q). Then

9]

Kiou) = Y Ki(w)us(x), where Kj(y)zjgk(x,y)uj(x)dx

=1

for almost all y. Due to the Parseval identity we have for almost all y

Ln«x,y)z dx =Y [Ky)?

i=1

and

[o¢]

(1) [ | wowPaxay =Y | woi)?ay.

j=1 7

We now define the following operator of rank N

Knf(x) = L Knlx, ) f(y) du,

where Kn(x,y) = Z]\J:] K;(y)u;j(x). By Cauchy-Schwartz inequality we
obtain

MK—mezzj

o ‘ JQ (K(X,U) — KN(X,g))f(y) dy‘zdx

sj J K(x,y) — Kn(x, ) dxdy [[f]2
QJO
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Thus by using that the right hand side in (1) is absolutely convergent, we
find

um—KmWsj

J K(x,y) — Kn(x, y)|2 dxdy
QJO

N
= | axan = | [t 3R aay

=1

N N
JQ LK(x,y) ; K () (x) dxdy + ; Lm(y) dy

N
:J J K(x,y)Izdxdy—ZJ Kj(y)l*dy — 0, as N — oo.
ala

j=1 7

U

3. BOUNDED SELF-ADJOINT OPERATORS
Definition. A bounded operator T : H — H is said to be self-adjoint if
vx,y € H
(Tx,y) =(x,Ty),  (A=A%.

Theorem 5 (Av.Fr. 6.5.1). Let T : be a bounded self-adjoint operator in a
Hilbert space H. Then

Tl = sup [(Tx,x]].

lIx[I=1
Proof. Clearly if ||x|| = 1, then
(T, ) < T[] = [Tl < [IT]

and therefore supj _; [(Tx, x)| < ||T||.

In order to proof the inverse inequality we consider z € H, ||z|]| = 1
Tz # 0 and uw = Tz/A, where A = |[Tz||'/2. If we denote by «
SUP) |1 |(Tx, x)|, then

722 = (T(Az),u) = %[(T(?\z+u),7\z+u) ~ (Thz—w),Az—u)]|
< 7 [z ull + Az —ul?] = 3 [IAz) +

x
LA+ 72| = e Tzl
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This implies that for any z € H, ||z|| = 1 we have ||Tz|| < « and hence
[T < o = supyy—; [(Tx, x)I. O

Definition. If Tx = Ax, x € H, x # 0, then x is called an eigenvector and A
is called an eigenvalue for the operator T.

Theorem 6 (Av.Fr. 6.5.2). Let {A;} and {x;} be eigenvalues and eigenvectors
for a self-adjoint operator T in H. Then

o All'Aj are real.
o If \j # Ay then the corresponding eigenvectors x; and xy are or-
thogonal.

Proof. Let Tx = Ax. Then
AlIX[12 = (Tx, x) = (x, Tx) = (Tx, x) = Al|x||%.
Let now Ty = py, A # . Then since T is self-adjoint we have

0= (Tx,y) — (x, Ty) = Alx,y) — u(x,y) = (A — ) (x,y).
]

Theorem 7. Let Ty and T, be two bounded self-adjoint operators. The

product T = TyT, is self-adjoint iff the operators Ty and T, commute
(ThiTz = T2Th).

Proof.
=TT =TLh=TTL=T

Definition.

e A bounded operator T in H is called positive (T > 0) if for any
x € H, (Tx,x) > 0.

e A bounded operator T in H is called strictly positive (T > 0) if for
any x € H, (Tx,x) > 0.

e A bounded operator T in H is called positive definite if there exist a
positive constant m > 0 such that

(Tx,x) > m|x||?, Vx € H.
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If T is positive then we can define an inner product < x,y >= (Tx,y). The
the Schwartz inequality gives us

2 (Tyy)? =<xy >*<<xx ><y,y >= (T, x)(Ty,y).
Lemma 1. If T > 0 then || Tx||*> < ||T||(Tx, x).

Proof.
(Tx, )% < (T, %) (Ty,y) < (T, %) || T|[[[u|*

The proof is complete if we substitute into the latter inequality y = Tx. [J

Definition. We say that B > Aif B—A > 0.

For any bounded operator T there exist two unique self-adjoint operators A
and B such that T = A +1B. Then T* = A — 1B and the operators A and B
could be found via
T4+ TF T—-T¢
2’ 2i
It is clearly that T*T > 0 and TT* > 0. The operators T and T* do not

always commute.

Definition. If T*T = TT* then T is called normal.

Home exercises.

1. Let 12 = {x =), 5 € C: 3 X2 < oo}. Define T : 12 — 12 such
that

T(x1,%2,%3,...) = (0,%7,%2,...).
Show that T*T # TT*.

2. Let Py and Py, be two projectors on the the subspaces L, M C H. Show
thatP]_S Plef Lc M.



