
LECTURE 12
COMPACT & BOUNDED OPERATORS IN HILBERT SPACE

1. FINITE RANK OPERATORS

Definition. T is said to be of rank r (r < ∞) if dim T(H) = r. The class of
operators of rank r is denoted by Kr and K := ∪rKr.

Theorem 1. T ∈ Kr iff T ∗ ∈ Kr.

Proof. Let T ∈ Kr and let u1, u2, . . . , ur be an orthonormal basis in T(H).
Then for any x ∈ H we have

Tx =

r∑
k=1

(Tx, uk)uk =

r∑
k=1

(x, T ∗uk)uk.

Denote vk = T ∗uk, then T =
∑r

k=1(·, vk)uk. Moreover

(Tx, y) =

r∑
k=1

((x, vk)uk, y) =

r∑
k=1

(x, (y, uk)vk) = (x, T ∗y).

Therefore T =
∑r

k=1(·, uk)vk and thus T ∗ ∈ Kr. �

Theorem 2. The uniform closure of the class of finite rank operators K

coincides with S∞.

Proof. Let T ∈ S∞. Then T maps the set B = {x : ‖x‖ ≤ 1} onto a
relatively compact set. For any ε > 0 there exists a finite set of elements
{yk}

r
k=1 such that for any y ∈ T(B) we have min ‖y − yk‖ ≤ ε. Let P be

the projection on the subspace spanned by yk. Clearly rank P ≤ r. Thus for
any x s.t. ‖x‖ ≤ 1 we obtain

‖Tx − PTx‖ ≤ min
k
‖Tx − yk‖ ≤ ε.

�

Remark 1. Uniform closure cannot be replaced by the strong closure.

Theorem 3. The strong closure of K(H) coincides with the class of all
bounded operators.
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Proof. Let {uk}
∞
k=1 be an orthonormal basis in H and let Pn be the projectors

on the subspaces spanned by {uk}
n
k=1. Then for any x ∈ H, ‖Pnx − x‖ → 0

which means that s-lim Pn = I. Thus s-lim PnT = T for any bounded
operator T . �

2. INTEGRAL OPERATORS

Theorem 4. Let K : L2(Ω) → L2(Ω), Ω ∈ R, be an integral operator

Kf(x) =

∫
Ω

K(x, y)f(y)dy,

such that ∫
Ω

∫
Ω

|K(x, y)|2 dxdy < ∞.

Then K is compact.

Proof. Let {uj}
∞
j=1 be an orthonormal basis in L2(Ω). Then

K(x, y) =

∞∑
j=1

Kj(y)uj(x), where Kj(y) =

∫
Ω

K(x, y)uj(x)dx

for almost all y. Due to the Parseval identity we have for almost all y∫
Ω

|K(x, y)|2 dx =

∞∑
j=1

|Kj(y)|2

and

(1)
∫

Ω

∫
Ω

|K(x, y)|2 dxdy =

∞∑
j=1

∫
Ω

|Kj(y)|2 dy.

We now define the following operator of rank N

KNf(x) =

∫
Ω

KN(x, y)f(y)dy,

where KN(x, y) =
∑N

j=1 Kj(y)uj(x). By Cauchy-Schwartz inequality we
obtain

‖(K − KN)f‖2 =

∫
Ω

∣∣∣ ∫
Ω

(
K(x, y) − KN(x, y)

)
f(y)dy

∣∣∣2dx

≤
∫

Ω

∫
Ω

|K(x, y) − KN(x, y)|2 dxdy ‖f‖2



3

Thus by using that the right hand side in (1) is absolutely convergent, we
find

‖(K − KN)‖2 ≤
∫

Ω

∫
Ω

|K(x, y) − KN(x, y)|2 dxdy

=

∫
Ω

∫
Ω

|K(x, y)|2 dxdy −

∫
Ω

∫
Ω

K(x, y)

N∑
j=1

Kj(y)uj(x)dxdy

−

∫
Ω

∫
Ω

K(x, y)

N∑
j=1

Kj(y)uj(x)dxdy +

N∑
j=1

∫
Ω

|Kj(y)|2 dy

=

∫
Ω

∫
Ω

|K(x, y)|2 dxdy −

N∑
j=1

∫
Ω

|Kj(y)|2 dy → 0, as N → ∞.

�

3. BOUNDED SELF-ADJOINT OPERATORS

Definition. A bounded operator T : H → H is said to be self-adjoint if
∀x, y ∈ H

(Tx, y) = (x, Ty), (A = A∗).

Theorem 5 (Av.Fr. 6.5.1). Let T : be a bounded self-adjoint operator in a
Hilbert space H. Then

‖T‖ = sup
‖x‖=1

|(Tx, x)|.

Proof. Clearly if ‖x‖ = 1, then

|(Tx, x)| ≤ ‖Tx‖‖x‖ = ‖Tx‖ ≤ ‖T‖

and therefore sup‖x‖=1 |(Tx, x)| ≤ ‖T‖.
In order to proof the inverse inequality we consider z ∈ H, ‖z‖ = 1,

Tz 6= 0 and u = Tz/λ, where λ = ‖Tz‖1/2. If we denote by α :=

sup‖x‖=1 |(Tx, x)|, then

‖Tz‖2 =
(
T(λz), u

)
=

1

4

[(
T(λz+u), λz+u

)
−

(
T(λz−u), λz−u

)]
≤ α

4

[
‖λz + u‖2 + ‖λz − u‖2

]
=

α

2

[
‖λz‖2 + ‖u‖2

]
α

2

[
‖λ‖2 + ‖Tz‖

]
= α‖Tz‖.
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This implies that for any z ∈ H, ‖z‖ = 1 we have ‖Tz‖ ≤ α and hence
‖T‖ ≤ α = sup‖x‖=1 |(Tx, x)|. �

Definition. If Tx = λx, x ∈ H, x 6= 0, then x is called an eigenvector and λ

is called an eigenvalue for the operator T .

Theorem 6 (Av.Fr. 6.5.2). Let {λj} and {xj} be eigenvalues and eigenvectors
for a self-adjoint operator T in H. Then

• All λj are real.
• If λj 6= λk then the corresponding eigenvectors xj and xk are or-

thogonal.

Proof. Let Tx = λx. Then

λ‖x‖2 = (Tx, x) = (x, Tx) = (Tx, x) = λ‖x‖2.

Let now Ty = µy, λ 6= µ. Then since T is self-adjoint we have

0 = (Tx, y) − (x, Ty) = λ(x, y) − µ(x, y) = (λ − µ)(x, y).

�

Theorem 7. Let T1 and T2 be two bounded self-adjoint operators. The
product T := T1T2 is self-adjoint iff the operators T1 and T2 commute
(T1T2 = T2T1).

Proof.

T ∗ = T ∗
2 T ∗

1 = T2T1 = T1T2 = T.

�

Definition.
• A bounded operator T in H is called positive (T ≥ 0) if for any

x ∈ H, (Tx, x) ≥ 0.
• A bounded operator T in H is called strictly positive (T > 0) if for

any x ∈ H, (Tx, x) > 0.
• A bounded operator T in H is called positive definite if there exist a

positive constant m > 0 such that

(Tx, x) ≥ m‖x‖2, ∀x ∈ H.
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If T is positive then we can define an inner product < x, y >= (Tx, y). The
the Schwartz inequality gives us

(2) (Tx, y)2 =< x, y >2≤< x, x >< y, y >= (Tx, x)(Ty, y).

Lemma 1. If T ≥ 0 then ‖Tx‖2 ≤ ‖T‖(Tx, x).

Proof.
(Tx, y)2 ≤ (Tx, x)(Ty, y) ≤ (Tx, x)‖T‖‖y‖2.

The proof is complete if we substitute into the latter inequality y = Tx. �

Definition. We say that B ≥ A if B − A ≥ 0.

For any bounded operator T there exist two unique self-adjoint operators A

and B such that T = A + iB. Then T ∗ = A − iB and the operators A and B

could be found via

A =
T + T ∗

2
, B =

T − T ∗

2i
.

It is clearly that T ∗T ≥ 0 and TT ∗ ≥ 0. The operators T and T ∗ do not
always commute.

Definition. If T ∗T = TT ∗ then T is called normal.

Home exercises.

1. Let l2 =
{

x = {xj}
∞
j=1, xj ∈ C :

∑
j |x|2 < ∞}

. Define T : l2 → l2 such
that

T(x1, x2, x3, . . . ) = (0, x1, x2, . . . ).

Show that T ∗T 6= TT ∗.

2. Let PL and PM be two projectors on the the subspaces L,M ⊂ H. Show
that PL ≤ PM iff L ⊂ M.


