LECTURE 11
COMPACT OPERATORS IN HILBERT SPACE

1. WEAK CONVERGENCY

Definition.
Let H be a Hilbert space, x,x € H.

We say that x,, — x weakly [x = w-limy_, o0 xn] if for any h € H we have
(xn,h) = (x,h).

Remark 1. If ||x, — x|| — O then x = w-limy_, o Xn.

Example. Let {u,,} be an orthonormal system. Then w — lim,, ,, U, = 0.
Indeed, for any x € H, x,, = (x, u,,) are its Fourier coefficients converging
to zero.

Lemma 1. Let {x,} be a weakly convergent sequence. Then {x.} is
bounded.

Proof. For any y € H we have (x,,y) — (x,y), x € H. Therefore the
sequence {(xn,y)} is bounded. Now the lemma follows from the principle
of uniform boundedness Th. 4.5.1 (AvFr). 0

Lemma 2. Ify, — y and w-lim,_,o, X, = X, then (xn,Yn) — (X, Y).
Proof.

|(Xn)yn) - (x,y)l S ||Xn||||yn_y|| + ‘(Xn»y) - (X>U)| — O

2. SESQUI-LINEAR FORMS

Definition. A functional ® : H x H — C is called sesqui-linear form if
®(x,y) it is linear w.r.t. x, anti-linear w.r.t. y and

@] :== sup [D(x,y)| < oo.
Ixll=lyll =T

Remark 2. Clearly |®(x,y)| < ||©]||Ix||[ly]-
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Examples. Let T and S be bounded operators in H. Then @ (x,y) = (Tx,y)
and @(x,y) = (x, Sy) are sesqui-linear forms.

Definition. @ (x) = ®(x, x) is called a quadratic form.

Remark 3. By using the same argument as in Th. 6.1.5.(Av.Fr) we find
() 4D(x,y)=0(x+y)—O(x—y) +i0(x +iy) —iD(x — iy).

Definition. A form @ is called Hermitian if
O(y,x) = O(x,y).

Theorem 1. The form ®(x,y) is Hermitian iff the quadratic form ®(x) is
real.

Proof. ®(y,x) = O(x,y) implies @ (x,x) = O(x,x). If ®(x) is real then
by using (1) we obtain that ®(x,y) is Hermitian. O

Theorem 2. If ©(x,y) = (Tx,y) = (x, Sy), then | @] = ||T|| = ||S||-

Proof. Since |®@(x,y)| < ||®||||x]|||uy|| the functional ®(-,y) is continuous.
Then by Riesz theorem (Th. 6.2.4) there exists h € Hs.t. O(x,y) = (x,h),
Vx € H. Define now S : y — h. The operator S is linear. Indeed

(-, Sleqyr + xay2)) = @[+, qy1 + xy2)
= 1P (,y1) + x@(,y2) = (-, Syr) + &2+, Sy2)
= (-, 1Sy1 + x2Sy2).
This implies |[Sy|| = [[h]| < [|@|/[ly/| and thus [|S[| < [|®]].

On the other hand |D(x,y)| < ||x||[|Syl| < [|S]|||x|||[y]| which gives us
@] < [[S]. O

Corollary 1. For any bounded operator T in a Hilbert space H ||T|| =
T

Theorem 3. A linear bounded operator T in H is defined by its quadratic
form (Tx, x).

Proof. Suppose that (Tyx,x) = (Tyx,x). Then by using (1) we find that
(Tix,y) = (Tox,y), Vx,y € H. Hence T; = To. ]



Definition. Let {T,,} be a sequence of bonded operators in H
e T, — T uniformly if | T,, — T|| — 0, asn — oo.
e T, — T strongly if || T,,x — Tx|| — 0,asn — oo, Vx € H.
e T, — T weakly if (Tyx,y) — (Tx,y), asn — oo, Vx,y € H.

Theorem 4. If w-limT,, =T, then w-lim T, = T*.
Proof.
(Mh=Thx,y) 20 = ((Ti—=TIxy)=(x,(Ta—Ty)
= ((Ta = T)y,x) — 0.
O

Remark 4. s-lim T, = T does not imply s-lim T, = T*.
Indeed, let h € H, ||h| = 1 and let {u,} be an orthonormal system in H.
Define T = (-, uy)h. Then

(Tax,y) = ((x,un)h,y) = (x, (y,Mu,) = T =(,hjun.
Since ||Tax|| = |(x,un)| — 0 we have s-limy ,o, T, = 0. However,
[Tih]| = flunl| =1 4 0.

3. COMPACT OPERATORS

Definition. A bounded operator T : H — H is called compact if it maps
bounded sets onto relatively compact. We shall denote the class of compact
operators by S .

Theorem 5 (AFr Th. 5.1.1.). If T € S, then it maps weakly convergent
sequences into convergent sequences.

Proof. see the proof from AFr Th. 5.1.1 given for more general spaces. [l

Theorem 6 (AFr Th. 5.1.2.). Let T,, : H — H be sequence of compact
operators uniformly convergent to 1. Then T is also compact.

Theorem 7. T € S, iff T*T € S...

Proof. If T € S, then T* is bounded and therefore T*T € S. If T*T € S
and w-limx,, = 0, then s-lim T*Tx,, = 0. Then by Lemma 2 we obtain
(Xn, T"Txn) = ||Txn]|* — O. O

Theorem 8. T|inS,, iff T* € S..
Proof. T* € S, implies T*T € S, and thus T € S. O



4. FINITE RANK OPERATORS

Definition. T is said to be of rank r (r < 00) if dim T(H) = r. The class of
operators of rank 1 is denoted by K, and K := U, K.

Theorem 9. T € K, iff T* € K..

Proof. Let T € K, and let uy,uy,...,u, be an orthonormal basis in T(H).
Then for any x € H we have
Tx = Z(Tx,uk)uk = Z(x, T W) Wy
k=1 k=1

Denote v, = T*uy, then T = Y (-, vi.)uy. Moreover

(Tx)y) = Z((X,Vk)uk,y) = Z(X) (U,Uk)\)k) = (X) T*y)
k=1 k=1
Therefore T = Y, (-, ux)vk and thus T* € K. O

Theorem 10. The uniform closure of the class of finite rank operators K
coincides with S,.

Proof. Let T € S,. Then T maps the set B = {x : ||x|| < 1} onto a
relatively compact set. For any ¢ > O there exists a finite set of elements
{YxJr_q such that for any y € T(B) we have min ||y — yi|| < €. Let P be
the projection on the subspace spanned by yy. Clearly rank P < r. Thus for
any x s.t. ||x|| < 1 we obtain

|| Tx — PTx|| < min ||Tx —yy|| < e.

Remark 5. Uniform closure cannot be replaced by the strong closure.

Theorem 11. The strong closure of K(H) coincides with the class of all
bounded operators.

Proof. Let {uyJ32_; be an orthonormal basis in H and let P, be the projectors
on the subspaces spanned by {u}}-_;. Then for any x € H, ||P,x —x|| — 0
which means that s-limP, = [. Thus s-limP,T = T for any bounded
operator T. O



Home exercises.
1. Let T: L%(0,1) — L?(0, 1) be an operator defined by

1
Tu(x) = L K(x y)u(y) dy,

where K € L2((0,1) x (0,1)). Show that T is compact.
2. Let Tx(t) = tx(t),0 <t < 1,T: L%0,1) — L%0,1). Is T compact?
3. Show that the integral operator T : 1%(0, 00) — L?(0, co) defined by

Tu(x) = J:O(x T+ u) uly) dy

is bounded b ut not compact. Find its norm.



