
LECTURE 11
COMPACT OPERATORS IN HILBERT SPACE

1. WEAK CONVERGENCY

Definition.
Let H be a Hilbert space, xn, x ∈ H.
We say that xn → x weakly

[
x = w-limn→∞ xn

]
if for any h ∈ H we have

(xn, h) → (x, h).

Remark 1. If ‖xn − x‖ → 0 then x = w-limn→∞ xn.

Example. Let {un} be an orthonormal system. Then w − limn→∞ un = 0.
Indeed, for any x ∈ H, xn = (x, un) are its Fourier coefficients converging
to zero.

Lemma 1. Let {xn} be a weakly convergent sequence. Then {xn} is
bounded.

Proof. For any y ∈ H we have (xn, y) → (x, y), x ∈ H. Therefore the
sequence {(xn, y)} is bounded. Now the lemma follows from the principle
of uniform boundedness Th. 4.5.1 (AvFr). �

Lemma 2. If yn → y and w-limn→∞ xn = x, then (xn, yn) → (x, y).

Proof.

|(xn, yn) − (x, y)| ≤ ‖xn‖‖yn − y‖+ |(xn, y) − (x, y)| → 0.

�

2. SESQUI-LINEAR FORMS

Definition. A functional Φ : H × H → C is called sesqui-linear form if
Φ(x, y) it is linear w.r.t. x, anti-linear w.r.t. y and

‖Φ‖ := sup
‖x‖=‖y‖=1

|Φ(x, y)| < ∞.

Remark 2. Clearly |Φ(x, y)| ≤ ‖Φ‖‖x‖‖y‖.
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Examples. Let T and S be bounded operators in H. Then Φ(x, y) = (Tx, y)

and Φ(x, y) = (x, Sy) are sesqui-linear forms.

Definition. Φ(x) = Φ(x, x) is called a quadratic form.

Remark 3. By using the same argument as in Th. 6.1.5.(Av.Fr) we find

(1) 4Φ(x, y) = Φ(x + y) − Φ(x − y) + iΦ(x + iy) − iΦ(x − iy).

Definition. A form Φ is called Hermitian if

Φ(y, x) = Φ(x, y).

Theorem 1. The form Φ(x, y) is Hermitian iff the quadratic form Φ(x) is
real.

Proof. Φ(y, x) = Φ(x, y) implies Φ(x, x) = Φ(x, x). If Φ(x) is real then
by using (1) we obtain that Φ(x, y) is Hermitian. �

Theorem 2. If Φ(x, y) = (Tx, y) = (x, Sy), then ‖Φ‖ = ‖T‖ = ‖S‖.

Proof. Since |Φ(x, y)| ≤ ‖Φ‖‖x‖‖y‖ the functional Φ(·, y) is continuous.
Then by Riesz theorem (Th. 6.2.4) there exists h ∈ H s.t. Φ(x, y) = (x, h),
∀x ∈ H. Define now S : y → h. The operator S is linear. Indeed

(·, S(α1y1 + α2y2)) = Φ(·, α1y1 + α2y2)

= ᾱ1Φ(·, y1) + ᾱ2Φ(·, y2) = ᾱ1(·, Sy1) + ᾱ2(·, Sy2)

= (·, α1Sy1 + α2Sy2).

This implies ‖Sy‖ = ‖h‖ ≤ ‖Φ‖‖y‖ and thus ‖S‖ ≤ ‖Φ‖.
On the other hand |Φ(x, y)| ≤ ‖x‖‖Sy‖ ≤ ‖S‖‖x‖‖y‖ which gives us

‖Φ‖ ≤ ‖S‖. �

Corollary 1. For any bounded operator T in a Hilbert space H ‖T‖ =

‖T ∗‖.

Theorem 3. A linear bounded operator T in H is defined by its quadratic
form (Tx, x).

Proof. Suppose that (T1x, x) = (T2x, x). Then by using (1) we find that
(T1x, y) = (T2x, y), ∀x, y ∈ H. Hence T1 = T2. �
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Definition. Let {Tn} be a sequence of bonded operators in H

• Tn → T uniformly if ‖Tn − T‖ → 0, as n → ∞.
• Tn → T strongly if ‖Tnx − Tx‖ → 0, as n → ∞, ∀x ∈ H.
• Tn → T weakly if (Tnx, y) → (Tx, y), as n → ∞, ∀x, y ∈ H.

Theorem 4. If w-lim Tn = T , then w-lim T ∗
n = T ∗.

Proof.(
(Tn − T)x, y

) → 0 =⇒ (
(T ∗

n − T ∗)x, y
)

=
(
x, (Tn − T)y

)
=

(
(Tn − T)y, x

) → 0.

�

Remark 4. s-lim Tn = T does not imply s-lim T ∗
n = T ∗.

Indeed, let h ∈ H, ‖h‖ = 1 and let {un} be an orthonormal system in H.
Define T = (·, un)h. Then

(Tnx, y) = ((x, un)h, y) = (x, (y, h)un) =⇒ T ∗ = (·, h)un.

Since ‖Tnx‖ = |(x, un)| → 0 we have s-limn→∞ Tn = 0. However,
‖T ∗

nh‖ = ‖un‖ = 1 6→ 0.

3. COMPACT OPERATORS

Definition. A bounded operator T : H → H is called compact if it maps
bounded sets onto relatively compact. We shall denote the class of compact
operators by S∞.

Theorem 5 (AFr Th. 5.1.1.). If T ∈ S∞ then it maps weakly convergent
sequences into convergent sequences.

Proof. see the proof from AFr Th. 5.1.1 given for more general spaces. �

Theorem 6 (AFr Th. 5.1.2.). Let Tn : H → H be sequence of compact
operators uniformly convergent to T . Then T is also compact.

Theorem 7. T ∈ S∞ iff T ∗T ∈ S∞.

Proof. If T ∈ S∞ then T ∗ is bounded and therefore T ∗T ∈ S∞. If T ∗T ∈ S∞
and w-lim xn = 0, then s-lim T ∗Txn = 0. Then by Lemma 2 we obtain
(xn, T ∗Txn) = ‖Txn‖2 → 0. �

Theorem 8. T |inS∞ iff T ∗ ∈ S∞.

Proof. T ∗ ∈ S∞ implies T ∗T ∈ S∞ and thus T ∈ S∞. �
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4. FINITE RANK OPERATORS

Definition. T is said to be of rank r (r < ∞) if dim T(H) = r. The class of
operators of rank r is denoted by Kr and K := ∪rKr.

Theorem 9. T ∈ Kr iff T ∗ ∈ Kr.

Proof. Let T ∈ Kr and let u1, u2, . . . , ur be an orthonormal basis in T(H).
Then for any x ∈ H we have

Tx =

r∑
k=1

(Tx, uk)uk =

r∑
k=1

(x, T ∗uk)uk.

Denote vk = T ∗uk, then T =
∑r

k=1(·, vk)uk. Moreover

(Tx, y) =

r∑
k=1

((x, vk)uk, y) =

r∑
k=1

(x, (y, uk)vk) = (x, T ∗y).

Therefore T =
∑r

k=1(·, uk)vk and thus T ∗ ∈ Kr. �

Theorem 10. The uniform closure of the class of finite rank operators K

coincides with S∞.

Proof. Let T ∈ S∞. Then T maps the set B = {x : ‖x‖ ≤ 1} onto a
relatively compact set. For any ε > 0 there exists a finite set of elements
{yk}

r
k=1 such that for any y ∈ T(B) we have min ‖y − yk‖ ≤ ε. Let P be

the projection on the subspace spanned by yk. Clearly rank P ≤ r. Thus for
any x s.t. ‖x‖ ≤ 1 we obtain

‖Tx − PTx‖ ≤ min ‖Tx − yk‖ ≤ ε.

�

Remark 5. Uniform closure cannot be replaced by the strong closure.

Theorem 11. The strong closure of K(H) coincides with the class of all
bounded operators.

Proof. Let {uk}
∞
k=1 be an orthonormal basis in H and let Pn be the projectors

on the subspaces spanned by {uk}
n
k=1. Then for any x ∈ H, ‖Pnx − x‖ → 0

which means that s-lim Pn = I. Thus s-lim PnT = T for any bounded
operator T . �
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Home exercises.

1. Let T : L2(0, 1) → L2(0, 1) be an operator defined by

Tu(x) =

∫ 1

0

K(x, y)u(y)dy,

where K ∈ L2((0, 1)× (0, 1)). Show that T is compact.

2. Let Tx(t) = tx(t), 0 ≤ t ≤ 1, T : L2(0, 1) → L2(0, 1). Is T compact?

3. Show that the integral operator T : L2(0,∞) → L2(0,∞) defined by

Tu(x) =

∫∞
0

(x + y)−1u(y)dy

is bounded b ut not compact. Find its norm.


