LECTURE 11

COMPACT OPERATORS IN HILBERT SPACE

1. Weak convergency

Definition.

Let H be a Hilbert space, $x_{n}, x \in H$.
We say that $x_{n} \rightarrow x$ weakly $\left[x=w\right.$ - $\left.\lim _{n \rightarrow \infty} x_{n}\right]$ if for any $h \in H$ we have $\left(x_{n}, h\right) \rightarrow(x, h)$.

Remark 1. If $\left\|x_{n}-x\right\| \rightarrow 0$ then $x=w-\lim _{n \rightarrow \infty} x_{n}$.

Example. Let $\left\{u_{n}\right\}$ be an orthonormal system. Then $w-\lim _{n \rightarrow \infty} u_{n}=0$. Indeed, for any $x \in H, x_{n}=\left(x, u_{n}\right)$ are its Fourier coefficients converging to zero.

Lemma 1. Let $\left\{x_{n}\right\}$ be a weakly convergent sequence. Then $\left\{x_{n}\right\}$ is bounded.

Proof. For any $y \in H$ we have $\left(x_{n}, y\right) \rightarrow(x, y), x \in H$. Therefore the sequence $\left\{\left(x_{n}, y\right)\right\}$ is bounded. Now the lemma follows from the principle of uniform boundedness Th. 4.5.1 (AvFr).

Lemma 2. If $y_{n} \rightarrow y$ and $w-\lim _{n \rightarrow \infty} x_{n}=x$, then $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$.
Proof.

$$
\left|\left(x_{n}, y_{n}\right)-(x, y)\right| \leq\left\|x_{n}\right\|\left\|y_{n}-y\right\|+\left|\left(x_{n}, y\right)-(x, y)\right| \rightarrow 0 .
$$

2. SESQUI-LINEAR FORMS

Definition. A functional $\Phi: \mathrm{H} \times \mathrm{H} \rightarrow \mathbb{C}$ is called sesqui-linear form if $\Phi(x, y)$ it is linear w.r.t. x, anti-linear w.r.t. y and

$$
\|\Phi\|:=\sup _{\|x\|=\|y\|=1}|\Phi(x, y)|<\infty
$$

Remark 2. Clearly $|\Phi(x, y)| \leq\|\Phi\|\|x\|\|y\|$.

Examples. Let T and S be bounded operators in H. Then $\Phi(x, y)=(T x, y)$ and $\Phi(x, y)=(x, S y)$ are sesqui-linear forms.

Definition. $\Phi(x)=\Phi(x, x)$ is called a quadratic form.
Remark 3. By using the same argument as in Th. 6.1.5.(Av.Fr) we find

$$
\begin{equation*}
4 \Phi(x, y)=\Phi(x+y)-\Phi(x-y)+\mathfrak{i} \Phi(x+\mathfrak{i} y)-\mathfrak{i} \Phi(x-i y) \tag{1}
\end{equation*}
$$

Definition. A form Φ is called Hermitian if

$$
\Phi(y, x)=\overline{\Phi(x, y)} .
$$

Theorem 1. The form $\Phi(x, y)$ is Hermitian iff the quadratic form $\Phi(x)$ is real.

Proof. $\Phi(y, x)=\overline{\Phi(x, y)}$ implies $\Phi(x, x)=\overline{\Phi(x, x)}$. If $\Phi(x)$ is real then by using (1) we obtain that $\Phi(x, y)$ is Hermitian.

Theorem 2. If $\Phi(x, y)=(T x, y)=(x, S y)$, then $\|\Phi\|=\|T\|=\|S\|$.
Proof. Since $|\Phi(x, y)| \leq\|\Phi\|\|x\|\|y\|$ the functional $\Phi(\cdot, y)$ is continuous. Then by Riesz theorem (Th. 6.2.4) there exists $h \in H$ s.t. $\Phi(x, y)=(x, h)$, $\forall x \in H$. Define now $S: y \rightarrow h$. The operator S is linear. Indeed

$$
\begin{aligned}
& \left(\cdot, S\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)\right)=\Phi\left(\cdot, \alpha_{1} y_{1}+\alpha_{2} y_{2}\right) \\
& \quad=\bar{\alpha}_{1} \Phi\left(\cdot, y_{1}\right)+\bar{\alpha}_{2} \Phi\left(\cdot, y_{2}\right)=\bar{\alpha}_{1}\left(\cdot, S y_{1}\right)+\bar{\alpha}_{2}\left(\cdot, S y_{2}\right) \\
& \quad=\left(\cdot, \alpha_{1} S y_{1}+\alpha_{2} S y_{2}\right)
\end{aligned}
$$

This implies $\|S y\|=\|h\| \leq\|\Phi\|\|y\|$ and thus $\|S\| \leq\|\Phi\|$.
On the other hand $|\Phi(x, y)| \leq\|x\|\|S y\| \leq\|S\|\|x\|\|y\|$ which gives us $\|\Phi\| \leq\|S\|$.

Corollary 1. For any bounded operator T in a Hilbert space $\mathrm{H}\|\mathrm{T}\|=$ $\left\|\mathrm{T}^{*}\right\|$.

Theorem 3. A linear bounded operator T in H is defined by its quadratic form ($\mathrm{T} x, \mathrm{x}$).

Proof. Suppose that $\left(T_{1} x, x\right)=\left(T_{2} x, x\right)$. Then by using (1) we find that $\left(T_{1} x, y\right)=\left(T_{2} x, y\right), \forall x, y \in H$. Hence $T_{1}=T_{2}$.

Definition. Let $\left\{T_{n}\right\}$ be a sequence of bonded operators in H

- $T_{n} \rightarrow T$ uniformly if $\left\|T_{n}-T\right\| \rightarrow 0$, as $n \rightarrow \infty$.
- $\mathrm{T}_{\mathrm{n}} \rightarrow \mathrm{T}$ strongly if $\left\|\mathrm{T}_{\mathrm{n}} x-\mathrm{Tx}\right\| \rightarrow 0$, as $n \rightarrow \infty, \forall x \in H$.
- $T_{n} \rightarrow T$ weakly if $\left(T_{n} x, y\right) \rightarrow(T x, y)$, as $n \rightarrow \infty, \forall x, y \in H$.

Theorem 4. If $w-\lim \mathrm{T}_{\mathrm{n}}=\mathrm{T}$, then $w-\lim \mathrm{T}_{\mathrm{n}}^{*}=\mathrm{T}^{*}$.
Proof.

$$
\begin{aligned}
\left(\left(T_{n}-T\right) x, y\right) \rightarrow 0 \Longrightarrow \quad\left(\left(T_{n}^{*}-T^{*}\right) x, y\right) & =\frac{\left(x,\left(T_{n}-T\right) y\right)}{\left.\left(T_{n}-T\right) y, x\right)} \rightarrow 0 .
\end{aligned}
$$

Remark 4. s - $\lim \mathrm{T}_{\mathrm{n}}=\mathrm{T}$ does not imply $\mathrm{s}-\lim \mathrm{T}_{\mathrm{n}}^{*}=\mathrm{T}^{*}$.
Indeed, let $h \in H,\|h\|=1$ and let $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ be an orthonormal system in H . Define $\mathrm{T}=\left(\cdot, \mathrm{u}_{\mathrm{n}}\right) \mathrm{h}$. Then

$$
\left(T_{n} x, y\right)=\left(\left(x, u_{n}\right) h, y\right)=\left(x,(y, h) u_{n}\right) \quad \Longrightarrow \quad T^{*}=(\cdot, h) u_{n} .
$$

Since $\left\|T_{n} x\right\|=\left|\left(x, u_{n}\right)\right| \rightarrow 0$ we have $s-\lim _{n \rightarrow \infty} T_{n}=0$. However, $\left\|\mathrm{T}_{n}^{*} \mathrm{~h}\right\|=\left\|\mathrm{u}_{\mathrm{n}}\right\|=1 \nrightarrow 0$.

3. Compact Operators

Definition. A bounded operator $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$ is called compact if it maps bounded sets onto relatively compact. We shall denote the class of compact operators by S_{∞}.

Theorem 5 (AFr Th . 5.1.1.). If $\mathrm{T} \in \mathrm{S}_{\infty}$ then it maps weakly convergent sequences into convergent sequences.

Proof. see the proof from AFr Th. 5.1.1 given for more general spaces.
Theorem 6 (AFr Th. 5.1.2.). Let $\mathrm{T}_{\mathrm{n}}: \mathrm{H} \rightarrow \mathrm{H}$ be sequence of compact operators uniformly convergent to T . Then T is also compact.

Theorem 7. $\mathrm{T} \in \mathrm{S}_{\infty}$ iff $\mathrm{T}^{*} \mathrm{~T} \in \mathrm{~S}_{\infty}$.
Proof. If $\mathrm{T} \in \mathrm{S}_{\infty}$ then T^{*} is bounded and therefore $\mathrm{T}^{*} \mathrm{~T} \in \mathrm{~S}_{\infty}$. If $\mathrm{T}^{*} \mathrm{~T} \in \mathrm{~S}_{\infty}$ and $w-\lim x_{n}=0$, then s-lim $T^{*} T x_{n}=0$. Then by Lemma 2 we obtain $\left(x_{n}, T^{*} T x_{n}\right)=\left\|T x_{n}\right\|^{2} \rightarrow 0$.

Theorem 8. $\mathrm{T} \mid \mathrm{inS}_{\infty}$ iff $\mathrm{T}^{*} \in \mathrm{~S}_{\infty}$.
Proof. $\mathrm{T}^{*} \in \mathrm{~S}_{\infty}$ implies $\mathrm{T}^{*} \mathrm{~T} \in \mathrm{~S}_{\infty}$ and thus $\mathrm{T} \in \mathrm{S}_{\infty}$.

4. Finite rank operators

Definition. T is said to be of rank $\mathrm{r}(\mathrm{r}<\infty)$ if $\operatorname{dim} \mathrm{T}(\mathrm{H})=\mathrm{r}$. The class of operators of rank r is denoted by K_{r} and $K:=\cup_{r} K_{r}$.

Theorem 9. $\mathrm{T} \in \mathrm{K}_{\mathrm{r}}$ iff $\mathrm{T}^{*} \in \mathrm{~K}_{\mathrm{r}}$.
Proof. Let $\mathrm{T} \in \mathrm{K}_{\mathrm{r}}$ and let $\mathfrak{u}_{1}, \mathfrak{u}_{2}, \ldots, \mathfrak{u}_{\mathrm{r}}$ be an orthonormal basis in $\mathrm{T}(\mathrm{H})$. Then for any $x \in H$ we have

$$
T x=\sum_{k=1}^{r}\left(T x, u_{k}\right) \mathfrak{u}_{k}=\sum_{k=1}^{r}\left(x, T^{*} u_{k}\right) \mathfrak{u}_{k} .
$$

Denote $v_{k}=\mathrm{T}^{*} \mathfrak{u}_{\mathrm{k}}$, then $\mathrm{T}=\sum_{k=1}^{r}\left(\cdot, v_{k}\right) \mathfrak{u}_{\mathrm{k}}$. Moreover

$$
(T x, y)=\sum_{k=1}^{r}\left(\left(x, v_{k}\right) u_{k}, y\right)=\sum_{k=1}^{r}\left(x,\left(y, u_{k}\right) v_{k}\right)=\left(x, T^{*} y\right) .
$$

Therefore $\mathrm{T}=\sum_{\mathrm{k}=1}^{\mathrm{r}}\left(\cdot,, \mathfrak{u}_{\mathrm{k}}\right) v_{\mathrm{k}}$ and thus $\mathrm{T}^{*} \in \mathrm{~K}_{\mathrm{r}}$.
Theorem 10. The uniform closure of the class of finite rank operators K coincides with S_{∞}.

Proof. Let $T \in S_{\infty}$. Then T maps the set $B=\{x:\|x\| \leq 1\}$ onto a relatively compact set. For any $\varepsilon>0$ there exists a finite set of elements $\left\{y_{k}\right\}_{k=1}^{r}$ such that for any $y \in T(B)$ we have $\min \left\|y-y_{k}\right\| \leq \varepsilon$. Let P be the projection on the subspace spanned by y_{k}. Clearly rank $P \leq r$. Thus for any x s.t. $\|x\| \leq 1$ we obtain

$$
\|\mathrm{T} x-\mathrm{PT} x\| \leq \min \left\|\mathrm{T} x-y_{k}\right\| \leq \varepsilon
$$

Remark 5. Uniform closure cannot be replaced by the strong closure.
Theorem 11. The strong closure of $\mathrm{K}(\mathrm{H})$ coincides with the class of all bounded operators.

Proof. Let $\left\{\mathfrak{u}_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis in H and let P_{n} be the projectors on the subspaces spanned by $\left\{u_{k}\right\}_{k=1}^{n}$. Then for any $x \in H,\left\|P_{n} x-x\right\| \rightarrow 0$ which means that $s-\lim P_{n}=I$. Thus $s-\lim P_{n} T=T$ for any bounded operator T .

Home exercises.

1. Let $T: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be an operator defined by

$$
T u(x)=\int_{0}^{1} K(x, y) u(y) d y
$$

where $K \in L^{2}((0,1) \times(0,1))$. Show that T is compact.
2. Let $T x(t)=t x(t), 0 \leq t \leq 1, T: L^{2}(0,1) \rightarrow L^{2}(0,1)$. Is T compact?
3. Show that the integral operator $T: L^{2}(0, \infty) \rightarrow L^{2}(0, \infty)$ defined by

$$
T u(x)=\int_{0}^{\infty}(x+y)^{-1} u(y) d y
$$

is bounded b ut not compact. Find its norm.

