LECTURE 11 COMPACT OPERATORS IN HILBERT SPACE

1. WEAK CONVERGENCY

Definition.

Let H be a Hilbert space, $x_n, x \in H$. We say that $x_n \to x$ weakly $\left[x = w - \lim_{n \to \infty} x_n\right]$ if for any $h \in H$ we have $(x_n, h) \to (x, h)$.

Remark 1. If $||x_n - x|| \to 0$ then $x = w - \lim_{n \to \infty} x_n$.

Example. Let $\{u_n\}$ be an orthonormal system. Then $w - \lim_{n \to \infty} u_n = 0$. Indeed, for any $x \in H$, $x_n = (x, u_n)$ are its Fourier coefficients converging to zero.

Lemma 1. Let $\{x_n\}$ be a weakly convergent sequence. Then $\{x_n\}$ is bounded.

Proof. For any $y \in H$ we have $(x_n, y) \to (x, y), x \in H$. Therefore the sequence $\{(x_n, y)\}$ is bounded. Now the lemma follows from the principle of uniform boundedness Th. 4.5.1 (AvFr).

Lemma 2. If $y_n \to y$ and w-lim $_{n\to\infty} x_n = x$, then $(x_n, y_n) \to (x, y)$.

Proof.

$$|(x_n, y_n) - (x, y)| \le ||x_n|| ||y_n - y|| + |(x_n, y) - (x, y)| \to 0.$$

2. Sesqui-linear forms

Definition. A functional Φ : $H \times H \rightarrow \mathbb{C}$ is called sesqui-linear form if $\Phi(x, y)$ it is linear w.r.t. x, anti-linear w.r.t. y and

$$\|\Phi\| := \sup_{\|\mathbf{x}\| = \|\mathbf{y}\| = 1} |\Phi(\mathbf{x}, \mathbf{y})| < \infty.$$

Remark 2. Clearly $|\Phi(\mathbf{x}, \mathbf{y})| \le \|\Phi\| \|\mathbf{x}\| \|\mathbf{y}\|$.

Examples. Let T and S be bounded operators in H. Then $\Phi(x, y) = (Tx, y)$ and $\Phi(x, y) = (x, Sy)$ are sesqui-linear forms.

Definition. $\Phi(x) = \Phi(x, x)$ is called a quadratic form.

Remark 3. By using the same argument as in Th. 6.1.5.(Av.Fr) we find

(1) $4\Phi(x,y) = \Phi(x+y) - \Phi(x-y) + i\Phi(x+iy) - i\Phi(x-iy).$

Definition. A form Φ is called Hermitian if

$$\Phi(\mathbf{y},\mathbf{x}) = \Phi(\mathbf{x},\mathbf{y}).$$

Theorem 1. The form $\Phi(x, y)$ is Hermitian iff the quadratic form $\Phi(x)$ is real.

Proof. $\Phi(y, x) = \overline{\Phi(x, y)}$ implies $\Phi(x, x) = \overline{\Phi(x, x)}$. If $\Phi(x)$ is real then by using (1) we obtain that $\Phi(x, y)$ is Hermitian.

Theorem 2. If $\Phi(x, y) = (Tx, y) = (x, Sy)$, then $\|\Phi\| = \|T\| = \|S\|$.

Proof. Since $|\Phi(x, y)| \le ||\Phi|| ||x|| ||y||$ the functional $\Phi(\cdot, y)$ is continuous. Then by Riesz theorem (Th. 6.2.4) there exists $h \in H$ s.t. $\Phi(x, y) = (x, h)$, $\forall x \in H$. Define now S : $y \to h$. The operator S is linear. Indeed

$$\begin{split} (\cdot, S(\alpha_1 y_1 + \alpha_2 y_2)) &= \Phi(\cdot, \alpha_1 y_1 + \alpha_2 y_2) \\ &= \bar{\alpha}_1 \Phi(\cdot, y_1) + \bar{\alpha}_2 \Phi(\cdot, y_2) = \bar{\alpha}_1(\cdot, Sy_1) + \bar{\alpha}_2(\cdot, Sy_2) \\ &= (\cdot, \alpha_1 Sy_1 + \alpha_2 Sy_2). \end{split}$$

This implies $||Sy|| = ||h|| \le ||\Phi|| ||y||$ and thus $||S|| \le ||\Phi||$.

On the other hand $|\Phi(x, y)| \le ||x|| ||Sy|| \le ||S|| ||x|| ||y||$ which gives us $||\Phi|| \le ||S||$.

Corollary 1. For any bounded operator T in a Hilbert space $H ||T|| = ||T^*||$.

Theorem 3. A linear bounded operator T in H is defined by its quadratic form (Tx, x).

Proof. Suppose that $(T_1x, x) = (T_2x, x)$. Then by using (1) we find that $(T_1x, y) = (T_2x, y), \forall x, y \in H$. Hence $T_1 = T_2$.

2

Definition. Let $\{T_n\}$ be a sequence of bonded operators in H

- $T_n \to T$ uniformly if $||T_n T|| \to 0$, as $n \to \infty$.
- $T_n \to T$ strongly if $||T_n x Tx|| \to 0$, as $n \to \infty$, $\forall x \in H$.
- $T_n \to T$ weakly if $(T_n x, y) \to (Tx, y)$, as $n \to \infty, \forall x, y \in H$.

Theorem 4. If w-lim $T_n = T$, then w-lim $T_n^* = T^*$.

Proof.

$$\begin{pmatrix} ((T_n - T)x, y) \to 0 \implies ((T_n^* - T^*)x, y) = (x, (T_n - T)y) \\ = \overline{((T_n - T)y, x)} \to 0.$$

Remark 4. s-lim $T_n = T$ does not imply s-lim $T_n^* = T^*$. Indeed, let $h \in H$, ||h|| = 1 and let $\{u_n\}$ be an orthonormal system in H. Define $T = (\cdot, u_n)h$. Then

$$(\mathsf{T}_n\mathsf{x},\mathsf{y})=((\mathsf{x},\mathsf{u}_n)\mathsf{h},\mathsf{y})=(\mathsf{x},(\mathsf{y},\mathsf{h})\mathsf{u}_n)\quad\Longrightarrow\quad\mathsf{T}^*=(\cdot,\mathsf{h})\mathsf{u}_n.$$

Since $||T_nx|| = |(x, u_n)| \to 0$ we have $s-\lim_{n\to\infty} T_n = 0$. However, $||T_n^*h|| = ||u_n|| = 1 \not\to 0$.

3. COMPACT OPERATORS

Definition. A bounded operator $T : H \to H$ is called compact if it maps bounded sets onto relatively compact. We shall denote the class of compact operators by S_{∞} .

Theorem 5 (AFr Th. 5.1.1.). If $T \in S_{\infty}$ then it maps weakly convergent sequences into convergent sequences.

Proof. see the proof from AFr Th. 5.1.1 given for more general spaces. \Box

Theorem 6 (AFr Th. 5.1.2.). Let $T_n : H \to H$ be sequence of compact operators uniformly convergent to T. Then T is also compact.

Theorem 7. $T \in S_{\infty}$ *iff* $T^*T \in S_{\infty}$.

Proof. If $T \in S_{\infty}$ then T^* is bounded and therefore $T^*T \in S_{\infty}$. If $T^*T \in S_{\infty}$ and w-lim $x_n = 0$, then s-lim $T^*Tx_n = 0$. Then by Lemma 2 we obtain $(x_n, T^*Tx_n) = ||Tx_n||^2 \to 0$.

Theorem 8. $T|inS_{\infty}$ *iff* $T^* \in S_{\infty}$.

Proof. $T^* \in S_{\infty}$ implies $T^*T \in S_{\infty}$ and thus $T \in S_{\infty}$.

4. FINITE RANK OPERATORS

Definition. T is said to be of rank r ($r < \infty$) if dim T(H) = r. The class of operators of rank r is denoted by K_r and K := $\cup_r K_r$.

Theorem 9. $T \in K_r$ *iff* $T^* \in K_r$.

Proof. Let $T \in K_r$ and let u_1, u_2, \ldots, u_r be an orthonormal basis in T(H). Then for any $x \in H$ we have

$$\mathsf{T} \mathsf{x} = \sum_{k=1}^{r} (\mathsf{T} \mathsf{x}, \mathfrak{u}_k) \mathfrak{u}_k = \sum_{k=1}^{r} (\mathsf{x}, \mathsf{T}^* \mathfrak{u}_k) \mathfrak{u}_k.$$

Denote $v_k = T^* u_k$, then $T = \sum_{k=1}^r (\cdot, v_k) u_k$. Moreover

$$(\mathsf{T} x, y) = \sum_{k=1}^{r} ((x, \nu_k) u_k, y) = \sum_{k=1}^{r} (x, (y, u_k) \nu_k) = (x, \mathsf{T}^* y).$$

Therefore $T = \sum_{k=1}^{r} (\cdot, u_k) v_k$ and thus $T^* \in K_r$.

Theorem 10. The uniform closure of the class of finite rank operators K coincides with S_{∞} .

Proof. Let $T \in S_{\infty}$. Then T maps the set $B = \{x : ||x|| \le 1\}$ onto a relatively compact set. For any $\varepsilon > 0$ there exists a finite set of elements $\{y_k\}_{k=1}^r$ such that for any $y \in T(B)$ we have min $||y - y_k|| \le \varepsilon$. Let P be the projection on the subspace spanned by y_k . Clearly rank $P \le r$. Thus for any x s.t. $||x|| \le 1$ we obtain

$$\|Tx - PTx\| \le \min \|Tx - y_k\| \le \varepsilon.$$

Remark 5. Uniform closure cannot be replaced by the strong closure.

Theorem 11. The strong closure of K(H) coincides with the class of all bounded operators.

Proof. Let $\{u_k\}_{k=1}^{\infty}$ be an orthonormal basis in H and let P_n be the projectors on the subspaces spanned by $\{u_k\}_{k=1}^n$. Then for any $x \in H$, $||P_n x - x|| \to 0$ which means that s-lim $P_n = I$. Thus s-lim $P_n T = T$ for any bounded operator T.

Home exercises.

1. Let $T:\,L^2(0,1)\to L^2(0,1)$ be an operator defined by

$$\mathsf{Tu}(\mathbf{x}) = \int_0^1 \mathsf{K}(\mathbf{x}, \mathbf{y}) \mathsf{u}(\mathbf{y}) \, \mathrm{d}\mathbf{y},$$

where $K \in L^2((0,1) \times (0,1)).$ Show that T is compact.

- **2.** Let $Tx(t) = tx(t), 0 \le t \le 1, T : L^2(0, 1) \to L^2(0, 1)$. Is T compact?
- 3. Show that the integral operator $T:\,L^2(0,\infty)\to L^2(0,\infty)$ defined by

$$\mathsf{Tu}(\mathbf{x}) = \int_0^\infty (\mathbf{x} + \mathbf{y})^{-1} \mathbf{u}(\mathbf{y}) \, \mathrm{d}\mathbf{y}$$

is bounded b ut not compact. Find its norm.