LECTURE 10

CH. 6.4 FROM A. FRIEDMAN

Definition.

Let H be a Hilbert space. A set $\mathrm{K} \subset \mathrm{H}$ is called orthonormal if for each element of $x \in K$ we have $\|x\|=1$ and and any two elements from K are orthogonal. An orthonormal set K is called complete if there exists no nonzero elements that are orthogonal to K.

Theorem. (AFr 6.4.1.) (Bessel's inequality)
Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an orthonormal set in a Hilbert space H. Then for any $x \in H$

$$
\sum_{n=1}^{\infty}\left|\left(x, x_{n}\right)\right|^{2} \leq\|x\|^{2}
$$

Theorem. (AFr 6.4.2.)
Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an orthonormal set in a Hilbert space H and let $\left\{\lambda_{n}\right\}$ be any sequence of scalars. Then for any m

$$
\left\|x-\sum_{n=1}^{\infty} \lambda_{n} x_{n}\right\| \geq\left\|x-\sum_{n=1}^{\infty}\left(x, x_{n}\right) x_{n}\right\| .
$$

Definition.

A set K is called an orthonormal basis of H if Kis an orthonormal set and if for any $x \in H$

$$
x=\sum_{y \in K}(x, y) y .
$$

Definition.

A space X is called separable if it contains a countable dense set.
Lemma. (AFr 6.4.7.)
Any orthonormal basis in a separable Hilbert space is countable.

Theorem.

The set $\left\{x_{n}\right\}$ is an orthonormal basis in a separable Hilbert space H iff

$$
\|x\|^{2}=\sum_{\substack{n=1 \\ 1}}^{\infty}\left|\left(x, x_{n}\right)\right|^{2}
$$

for any $x \in H$.
Lemma. (AFr 6.4.8.)
Any two infinite dimensional separable Hilbert spaces are isometrical isomorphic.

Corollary. (AFr 6.4.9.)
Any infinite dimensional separable Hilbert space is isometrical isomorphic to $L^{2}(0,1)$.

Examples.

1. $H=L^{2}(-\pi, \pi)$ with an orthonormal basis $u_{n}(t)=e^{\text {int }} / \sqrt{2 \pi}, n \in \mathbb{Z}$.
2. $\mathrm{H}=\mathrm{H}^{1}(-\pi, \pi)$ - Sobolev space with the scalar product:

$$
(u, v)=\int_{-\pi}^{\pi}\left(u^{\prime}(t) \overline{v^{\prime}(t)}+u(t) \overline{v(t)}\right) d t
$$

The set of functions $u_{n}(\mathrm{t})=e^{\mathrm{int}} / \sqrt{2 \pi}$ is orthogonal set but not normal in $\mathrm{H}^{1}(-\pi, \pi)$.
Question: Is the set $\left\{\mathrm{u}_{n}\right\}$ basis in the Hilbert space $\mathrm{H}^{1}(-\pi, \pi)$?
Namely, is there a function $h(t)$ such that h is orthogonal to all u_{n} ?
Assume that there exists such a function h. Then
(1) $0=\int_{-\pi}^{\pi}\left(h^{\prime}(t)\left(-\mathrm{in} e^{-\mathrm{int}}+h(\mathrm{t}) e^{-\mathrm{int}}\right) d \mathrm{t}\right.$

$$
\begin{aligned}
&=\left(1+\mathrm{n}^{2}\right) \int_{-\pi}^{\pi} h(t) e^{-i n t} d t-\left.\operatorname{inh}(t) e^{-i n t}\right|_{-\pi} ^{\pi} \\
&=\left(1+n^{2}\right) c_{n}-\operatorname{in}(-1)^{n}(h(\pi)-h(-\pi))
\end{aligned}
$$

where

$$
c_{n}=\int_{-\pi}^{\pi} h(t) e^{-i n t} d t
$$

From (1) we obtain

$$
\begin{equation*}
c_{n}=\frac{i}{\sqrt{2 \pi}} \frac{n}{1+n^{2}}(-1)^{n}(h(\pi)-h(-\pi)), \quad n=\mathbb{Z} . \tag{2}
\end{equation*}
$$

We not define

$$
\begin{equation*}
h(t)=\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} c_{n} e^{i n t} \tag{3}
\end{equation*}
$$

3. $\left.H=L^{(}-1,1\right)$ with an orthonormal basis
$u_{n}(t)=c_{k} \frac{d^{k}}{d t^{k}}\left(t^{2}-1\right)^{k}, \quad$ where $c_{k}=\frac{\sqrt{k+1 / 2}}{2^{k} k!}, \quad k=0,1, \ldots$.
4. $\mathrm{H}=\mathrm{L}^{2}(\mathbb{R})$
$u_{k}(t)=(-1)^{k} c_{k} e^{t^{2} / 2} \frac{d^{k}}{d t^{k}} e^{-t^{2}}, \quad$ where $\quad c_{k}=\left(2^{k} k!\right)^{-1 / 2} \pi^{-1 / 4}, \quad k=0,1,2, \ldots$
5. Let \mathbb{D} be a unit ball in the complex plane

$$
\mathbb{D}=\{z=x+i y:|z|<1\} .
$$

Let $A^{2}(\mathbb{D})$ be the set of $L^{2}(\mathbb{D})$ analytic functions in \mathbb{D}. The space A^{2} is a Hillbert space with an orthonormal basis

$$
u_{k}(z)=\pi^{-1 / 2}(k+1)^{1 / 2} z^{k}, \quad k=0, \pm 1, \pm 2, \ldots
$$

Indeed, let $z=r e^{i t}$. Then

$$
\left(u_{k}, u_{l}\right)=\pi^{-1}(k+1)^{1 / 2}(l+1)^{1 / 2} \int_{0}^{2 \pi} \int_{0}^{1} e^{i(k-l) t} r^{k+l+1} d r d t=\delta_{k l}
$$

6. $\mathrm{H}=\mathrm{F}^{2}$ - the Fock space, the space of entire function s.t.

$$
\|f\|^{2}=\int_{\mathbb{C}}|f(z)|^{2} e^{-|z|^{2}} d x d y<\infty
$$

The set $\left\{\psi_{k}\right\}$

$$
\psi_{k}(z)=\pi^{-1 / 2}(k!)^{-1 / 2} z^{k}, \quad k=0, \pm 1, \pm 2, \ldots
$$

is an orthonormal basis.

Home exercises.

1. Show that the function h defined in (3) satisfies the equation

$$
h^{\prime \prime}(t)=h(t), \quad h^{\prime}(\pi)=h^{\prime}(-\pi)
$$

2. (ex. 6.4.2 from AFr) Let H_{0} be a linear subspace of a Hilbert space H , spanned by a sequence $\left\{\chi_{m}\right\}$ of linearly independent elements. Show that there exist scalars $\lambda_{m n}$ s.t. the sequence $\left\{y_{m}\right\}$ given by

$$
y_{m} \sum_{n=1}^{m} \lambda_{m n} x_{n}
$$

is orthonormal and it spans H_{0}. This process of passing from $\left\{x_{m}\right\}$ to $\left\{y_{m}\right\}$ is called the Gram-Schmidt process.
3. (ex. 6.4.6 from AFr) Show that an orthonormal sequence $\left\{\varphi_{n}\right\}$ is complete in $L^{2}(a, b)$ if

$$
\sum_{n=1}^{\infty}\left(\int_{a}^{x} \varphi_{n}(t) d t\right)^{2}=x-a
$$

for all $x \in(a, b)$.
4. (ex. 6.4.7 from AFr) If $\left\{x_{n}\right\}$ is a complete orthonormal sequence in a Hilbert space H and if $\left\{y_{n}\right\}$ is an orthonormal sequence in H satisfying

$$
\sum_{n=1}^{\infty}\left\|x_{n}-y_{n}\right\|^{2}<1
$$

then $\left\{y_{n}\right\}$ is also complete.

