Part of the lecture on February 14

1. A space is compact if for any family of open subspaces $\left\{U_{i}\right\}_{i \in I}$ such that $X=\cup_{i \in I} U_{i}$ there are finitely many $U_{i_{1}}, \ldots, U_{i_{k}}$ for which $X=U_{i_{1}} \cup \cdots \cup U_{i_{k}}$.

Let $A \subset X$ be a subspace. A is a compact space if and only if for any family $\left\{U_{i}\right\}_{i \in I}$ of open subsets in X such that $A \subset \cup_{i \in I} U_{i}$, there are are finitely many $U_{i_{1}}, \ldots, U_{i_{k}}$ for which $A \subset U_{i_{1}} \cup \cdots \cup U_{i_{k}}$.

Let $f: X \rightarrow Y$ be a continuous map. If $A \subset X$ is compact, then so is $f(A)$.

If X is compact, then so is any closed subset of X.
2. A space is Hausdorff if for any two points $x, y \in X$, there are open sets U and V such that $x \in U, y \in V$, and $U \cap V=\emptyset$.

Any metric space is Hausdorff.
If X is Hausdorff, then any compact subspace of X is closed.
If X is metric and compact space, then any sequence $\left\{x_{i}\right\}_{i>0}$ of elements in X has a convergent subsequence.

Let X be metric and compact. Then, for any family of open subspaces $\left\{U_{i}\right\}_{i \in I}$ for which $X=\cup_{i \in I} U_{i}$, there is a number $r>0$ with the following property: for any $x \in X$, there is $i \in I$ such that $B(x, r) \subset U_{i}$. Here $B(x, r)=\{y \in X \mid d(x, y)<r\}$.
3. Let $f: X \rightarrow Y$ be a continuous map. Assume that X is compact, Y is Hausdorff, f is 1-1 and f is onto. Then f is a homeomorphism. To see this we need to show that f takes closed sets to closed sets (in this way f^{-1} would be continuous). Since X is compact, then so is any of its closed subsets. Their images must therefore be also compact in Y. As Y is Hausdorff, these compact sets are also closed.
4. The interval $[0,1] \subset \mathbf{R}$ is a compact space.
5. Let X and Y be topological spaces. Consider the product $X \times Y$ with the topology induced by the base:

$$
\{U \times V \mid U \text { is open in } X \text { and } V \text { is open in } Y\}
$$

A subset $S \subset X \times Y$ is open if $S=\cup\left(U_{i} \times V_{j}\right)$ for some open subsets $U_{i} \subset X$ and $V_{j} \subset Y$. We call this topological space the product of X and Y. This space has the following properties:
(1) The projections $\mathrm{pr}_{1}: X \times Y \rightarrow X,(x, y) \mapsto x$, and $\mathrm{pr}_{2}: X \times Y \rightarrow Y,(x, y) \mapsto y$, are continuous maps.
(2) For any two continuous maps $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ there is a unique continuous map $h: Z \rightarrow X \times Y$ for which the
following diagram commutes:

