## Part of the lecture on February 14

**1.** A space is *compact* if for any family of open subspaces  $\{U_i\}_{i \in I}$  such that  $X = \bigcup_{i \in I} U_i$  there are finitely many  $U_{i_1}, \ldots, U_{i_k}$  for which  $X = U_{i_1} \cup \cdots \cup U_{i_k}$ .

Let  $A \subset X$  be a subspace. A is a compact space if and only if for any family  $\{U_i\}_{i \in I}$  of open subsets in X such that  $A \subset \bigcup_{i \in I} U_i$ , there are are finitely many  $U_{i_1}, \ldots, U_{i_k}$  for which  $A \subset U_{i_1} \cup \cdots \cup U_{i_k}$ .

Let  $f: X \to Y$  be a continuous map. If  $A \subset X$  is compact, then so is f(A).

If X is compact, then so is any closed subset of X.

**2.** A space is Hausdorff if for any two points  $x, y \in X$ , there are open sets U and V such that  $x \in U, y \in V$ , and  $U \cap V = \emptyset$ .

Any metric space is Hausdorff.

If X is Hausdorff, then any compact subspace of X is closed.

If X is metric and compact space, then any sequence  $\{x_i\}_{i>0}$  of elements in X has a convergent subsequence.

Let X be metric and compact. Then, for any family of open subspaces  $\{U_i\}_{i \in I}$  for which  $X = \bigcup_{i \in I} U_i$ , there is a number r > 0 with the following property: for any  $x \in X$ , there is  $i \in I$  such that  $B(x, r) \subset U_i$ . Here  $B(x, r) = \{y \in X \mid d(x, y) < r\}$ .

**3.** Let  $f: X \to Y$  be a continuous map. Assume that X is compact, Y is Hausdorff, f is 1-1 and f is onto. Then f is a homeomorphism. To see this we need to show that f takes closed sets to closed sets (in this way  $f^{-1}$  would be continuous). Since X is compact, then so is any of its closed subsets. Their images must therefore be also compact in Y. As Y is Hausdorff, these compact sets are also closed.

**4.** The interval  $[0,1] \subset \mathbf{R}$  is a compact space.

**5.** Let X and Y be topological spaces. Consider the product  $X \times Y$  with the topology induced by the base:

 $\{U \times V \mid U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$ 

A subset  $S \subset X \times Y$  is open if  $S = \bigcup (U_i \times V_j)$  for some open subsets  $U_i \subset X$  and  $V_j \subset Y$ . We call this topological space the product of X and Y. This space has the following properties:

- (1) The projections  $\operatorname{pr}_1 : X \times Y \to X$ ,  $(x, y) \mapsto x$ , and  $\operatorname{pr}_2 : X \times Y \to Y$ ,  $(x, y) \mapsto y$ , are continuous maps.
- (2) For any two continuous maps  $f : Z \to X$  and  $g : Z \to Y$ there is a unique continuous map  $h : Z \to X \times Y$  for which the

following diagram commutes:

