Homework 3 Due date May 23rd

Due date May 23rd, send it by e-mail at wojtek@math.kth.se or put it in my mailbox in the math department

Solve either problems 1 and 3 or problems 2 and 3
Problem 1. Show that $\pi_{1}\left(S^{2}, x\right)=0$.

Problem 2.

(a) Let $x, y \in S^{2}$ be such that $x \neq-y$. The arc between x and y is a map $\tau:[0,1] \rightarrow S^{2}$ given by the formula:

$$
\tau(t)=\frac{t y+(1-t) x}{|t y+(1-t) x|}
$$

Show that for any finite set of $\operatorname{arcs} \tau_{1}, \tau_{2}, \ldots, \tau_{n}$ in S^{2}

$$
\tau_{1}([01]) \cup \tau_{2}([01]) \cup \cdots \cup \tau_{n}([01]) \neq S^{2}
$$

(S^{2} is not a union of images of finitely many arcs).
(b) Let $\omega:[0,1] \rightarrow S^{2}$ be a map such that for any $t \in[0,1],|\omega(t)-\omega(0)|<1 / 3$. Show that ω is homotopic relative $\{0,1\}$ to the the $\operatorname{arc} \tau:[0,1] \rightarrow S^{2}$ where:

$$
\tau(t)=\frac{t \omega(1)+(1-t) \omega(0)}{|t \omega(1)+(1-t) \omega(0)|}
$$

(c) Let $\omega:[0,1] \rightarrow S^{2}$ be a map. Show that there is n such that, for any $0 \leq k \leq n$ and any $t \in[k / n,(k+1) / n] \subset[0,1],|\omega(t)-\omega(k / n)|<1 / 3$.
(d) Show that any map $\omega: I \rightarrow S^{2}$ is homotopic relative $\{0,1\}$ to a path of the form $\tau_{1} * \tau_{2} * \cdots * \tau_{n}$ for some arcs τ_{i}.

- Show that $\pi_{1}\left(S^{2}, x\right)=0$.

Problem 3. Calculate $\pi_{1}\left(\mathbf{P}^{2}, *\right)$, where \mathbf{P}^{2} is the projective space

