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Introduction
The purpose of these notes is to introduce, at the undergraduate level, some fundamental

notions of algebra and geometry. Throughout we illustrate the theory with examples of
matrix groups, and we motivate the introduction of new concepts as tools for distinguishin
the most common matrix groups. We are thus, in a natural way, lead to the algebraic
structures groups, rings, fields, vector spaces, and Lie algebras, and the geometric struc-
tures topological spaces, metric spaces, manifolds, Lie groups, and varieties. The language,
methods and spirit of these areas penetrate most parts of mathematics and its applications,
and it is of utmost importance that the student encounters these notions at an early stage.

Matrix groups are central in many parts of mathematics and its applications, and the
theory of matrix groups is ideal as an introduction to mathematics. On the one hand it
is easy to calculate and understand examples, and on the other hand the examples lead
to an understanding of the general theoretical framework that incorporates the matrix
groups. This is natural historically, as the study of matrix groups has been one of the
main forces behind the development of several important branches of mathematics and its
applications. It is particularly fascinating how algebra and geometry are intertwined in
the study of matrix groups. The unity of algebraic an geometric methods is deeply rooted
in mathematics and the matrix groups provide an excellent concrete illustration of this
phenomenon.

Throughout we have made an effort to keep the presentation elementary and have in-
cluded the minimum of the standard material in algebra and geometry that is necessary
in the study of matrix groups. As a consequence we have covered less general material
than is usually included in more general treatises in algebra and geometry. On the other
hand we have included more material of a general nature than is normally presented in
specialized expositions of matrix groups. Hopefully we have found an equilibrium that
makes the notes enjoyable, and useful, to undergraduate students. There is a vast flora of
general textbooks in algebra and geometry that cover the general material of these notes.
During the preparation of these notes we have found the books of [1], [2], [3], [5], [6], and
[7], of the reference list, useful.

The prerequisites for this course consist of a standard course in linear algebra and cal-
culus. To appreciate the text, mathematical maturity and interest in mathematics is
important. We assume that the reader, with a few hints, can fill in details in proofs that
are similar to those of the basic courses of linear algebra and calculus. This should cause
no difficulties to a student mastering fully the first year courses, and we hope that it is a
challenge for the student to rethink earlier courses in a more general setting.
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1 Algebraic properties of matrix groups
In this chapter we introduce some important matrix groups, called classical, over the

complex numbers. We use these groups to motivate the definitions of groups, rings and
fields, and to illustrate their properties. It is natural to generalize these matrix groups to
general fields. In order to study these classical groups over arbitrary fields we discuss the
theory of vector spaces over arbitrary fields, and bilinear forms on such vector spaces. We
can then define the orthogonal and symplectic group with respect to the bilinear forms.
The tools we introduce allow us to determine the generators for the general linear group,
the orthogonal group, the symplectic group, and their special subgroups. We then determine
the centers of these groups. The center is an invariant that allows us to distinguish several,
but not all, of the groups that we have studied.

1.1 Matrix groups over the complex numbers
In this section we define the most common matrix groups with coefficients in the complex

numbers. These groups, that are called classical, and their properties will serve as a
motivation for the material in the remaining part of the book. We assume here that the
reader is familiar with the basic notions of linear algebra, like multiplication, determinants,
and inverses of matrices.

Let Mn(C) be the set of all n×n matrices A = (aij), with complex coordinates aij. The
identity matrix which has diagonal coordinates equal to 1 and the remaining coordinates
equal to 0 is denoted by In and we shall denote the matrix with all coordinates zero by
0, irrespectively of what size it has. Given a matrix A = (aij) in Mn(C) and a complex
number a, we write aA = (aaij) and we denote the determinant of a matrix A in Mn(C)
by det A.

The transpose (aji) of the matrix A = (aij) is denoted by tA. We have that
det A = det tA.

Multiplication of two matrices A = (aij) and B = (bij) in Mn(C) produces a matrix
AB = (

∑n
l=1 ailblj). The multiplication can be considered as a map

Mn(C)×Mn(C) → Mn(C)

from the set of ordered pairs (A,B) of matrices in Mn(C) to Mn(C), which sends (A,B)
to AB. We have the following multiplication rules

A = InA = AIn,

A(BC) = (AB)C,
t(AB) = tBtA,

for any three matrices A,B and C of Mn(C). Moreover, we have that
det AB = det A det B.

A matrix A in Mn(C) is called invertible, or non-singular, if there is a matrix B such
that

AB = BA = In. (1.1.0.1)
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The matrix B in the expression 1.1.0.1 is uniquely determined. It is called the inverse of
A and it is denoted by A−1. Since we have that

(tA)−1 = t(A−1),

we can write tA−1 = (tA)−1 = t(A−1), without ambiguity.
The subset of Mn(C) consisting of invertible matrices is denoted by Gln(C), and called

the general linear group. Given two matrices A and B in Gln(C) we have that the product
AB has inverse B−1A−1, that is

(AB)−1 = B−1A−1.

Hence the product AB is in Gln(C). Moreover, we have that

det A =
1

det A−1
.

The subset of Gln(C) consisting of matrices with determinant 1 is denoted by Sln(C)
and called the special linear group. Given two matrices A and B in Sln(C), it follows from
the equation det AB = det A det B that AB is in Sln(C). Moreover, it follows from the
equation det A−1 = (det A)−1 that A−1 is in Sln(C).

Fix a matrix S in Mn(C). We shall denote by GS(C) the subset of matrices A in Gln(C)
that satisfy the relation

tASA = S.

Given two matrices A and B in GS(C), we have that AB is in GS(C). Indeed, we have
that

t(AB)SAB = tBtASAB = tB(tASA)B = tBSB = S.

Moreover, we have that A−1 is in GS(C). Indeed, when multiplying the relation S = tASA

to the right by A−1 and to the left by tA
−1, we obtain the equation

tA
−1

SA−1 = S.

When S is in Gln(C) it follows from the equality det tA det S det A = det S that we have
(det A)2 = 1. Hence det A = ±1. In this case we denote the subset of matrices A in GS(C)
that have determinant equal to 1 by SGS(C). As in the case with Sln(C) we have that if
A and B are in SGS(C), then AB and A−1 are both in SGS(C).

We have seen that all the sets Gln(C), Sln(C), GS(C) and SGS(C) share the properties
that if A, B and C are elements of the set, then In, A−1 and AB are also in the set. Clearly
we also have that A = AIn = InA, AA−1 = A−1A = In and A(BC) = (AB)C, because
these relations hold for all elements in Gln(C).

There are two special cases of GS(C) and SGS(C) that are particularly interesting. The
first one is obtained when S = In. The corresponding groups GS(C) and SGS(C) are
denoted by On(C) and SOn(C) and called the orthogonal group and special orthogonal
group respectively. They consist of the elements A in Gln(C) and Sln(C), respectively,
such that

tAA = In.
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To introduce the second special case it is convenient to use the following notation for
matrices

Given matrices A, B, C and D of sizes r×s, r×(n−s), (n−r)×s, and (n−r)×(n−s),
respectively, we denote by (

A B
C D

)

the n× n block matrix with A, B, C and D in the upper left, upper right, lower left, and
lower right corner, respectively.

Let Jm be the matrix in Mm(C) with 1 on the antidiagonal, that is the coordinates aij

with i + j = m + 1 are 1, and the remaining coordinates 0. Take

S =

(
0 Jm

−Jm 0

)
. (1.1.0.2)

The corresponding set GS(C) is denoted by Sp2m(C) and it is called the symplectic group.
When we write Spn(C), we always assume that n is even.
Remark 1.1.1. In the following it will be important to view the matrix groups On(C),
SOn(C) and Spn(C) as automorphisms of bilinear forms. We shall return to this point of
view in Sections 1.7 and 1.8. Here we shall indicate how it is done.

Let S = (sij) be in Mn(C). Define a map
〈 , 〉 : Cn ×Cn → C,

by

〈(a1, . . . , an), (b1, . . . , bn)〉 =
(
a1 . . . an

)



s11 . . . s1n
... . . . ...

sn1 . . . snn







b1
...
bn


 . (1.1.1.1)

The map 〈 , 〉 satisfies the following properties:
Given x, y and z in Cn, and a in C, we have that:
(i) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
(ii) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.
(iii) 〈ax, y〉 = 〈x, ay〉 = a〈x, y〉.

We say that 〈 , 〉 is a bilinear form on Cn. A matrix A in Gln(C) is an automorphism of
the form if

〈Ax,Ay〉 = 〈x, y〉, for all pairs x, y in Cn.
We have that GS(C) consists of all automorphisms of the bilinear form 〈 , 〉 defined by S
(see Exercise 1.1.4).

Not all the groups given above are different. We have, for example that Sp2(C) = Sl2(C)
(see Exercise 1.1.7). The main theme of these notes is to investigate in which sense they
are different. This is done by imposing algebraic and geometric structures on the groups
and by associating to these structures invariants that make it possible to distinguish them.
As mentioned above we shall determine the centers of the matrix groups of this section,
and in this way distinguis between several of them. First we shall however introduce the
concept of a group and generalize the matrix groups of this section.
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Exercises
1.1.1. Determine the groups Gl1(C), Sl1(C), O1(C) and SO1(C).

1.1.2. Show that the inclusions Sln(C) ⊆ Gln(C) and SOn(C) ⊆ On(C) are proper.

1.1.3. Define the groups SSp2(C) and show that SSp2(C) = Sp2(C).

1.1.4. Show that the group GS(C) is the group of automorphisms of the form 〈 , 〉, defined by

〈(a1, . . . , an), (b1, . . . , bn)〉 =
(
a1 . . . an

)



s11 . . . s1n
... . . . ...

sn1 . . . snn







b1
...

bn


 .

1.1.5. Let 〈 , 〉 : Cn ×Cn → Cn be defined as in 1.1.1.1 with S = In, and let A be a matrix in
Mn(C). Show that tA is the unique matrix B such that 〈Ax, y〉 = 〈x,By〉 for all x and y in Cn.

1.1.6. Determine all elements of O2(C) and SO2(C).

1.1.7. Show that Sl2(C) = Sp2(C).

1.2 Groups
We have in Section 1.1 given examples of sets whose elements can be multiplied and the

multiplication in all the sets enjoys similar algebraic properties. In this section we shall
formalize the essential properties of the multiplication.

A multiplication on a set S is a map
S × S → S

from the Cartesian product S × S, that is the set of ordered pairs of elements of S, to S.
The image of the pair (a, b) we denote by ab.
Definition 1.2.1. A group is a set G together with a multiplication that satisfies the
following three properties:

(i) (Associativity) For any triple a, b, c of elements of G, we have that
a(bc) = (ab)c.

(ii) (Identity) There is an element e in G such that
a = ae = ea

for all elements a of G.
(iii) (Inverse) For each element a of G there is an element b of G such that

e = ab = ba.

There is only one element in G having the same property (ii) as e. Indeed, if e′ were
another such element we have that

e′ = e′e = e.

Similarly, given a, there is only one element b in G having the property of (iii). Indeed, if
b′ were another such element we have that

b′ = b′e = b′(ab) = (b′a)b = eb = b.
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Example 1.2.2. We saw in Section 1.1 that all the sets Gln(C), On(C), Spn(C), Sln(C)
and SOn(C) are groups.

There are many more natural groups than those in the previous example. Here follows
some well-known examples.
Example 1.2.3. The integers Z, the rational numbers Q, the real numbers R and the
complex numbers C are all groups under addition. In these cases we are used to denote
the multiplication by the symbol + and the identity by 0.
Example 1.2.4. The non-zero rational, real and complex numbers, Q∗, R∗, and C∗ are
groups under multiplication.
Example 1.2.5. Let S be a set. Denote by SS the set of all injective maps of S onto
itself. We define the product τσ of two maps σ : S → S and τ : S → S as the composite
map τσ : S → S. With this multiplication SS is a group. The identity is the map that
leaves all elements of S fixed, and the inverse of a map τ is the map that sends τ(i) to i,
which exists because τ is injective and onto. When S = {1, . . . , n} we write SS = Sn and
we call Sn the symmetric group on n letters. It is a group with n! elements.
Definition 1.2.6. A group G is called abelian if ab = ba for all pairs of elements a, b of
G, and we say that a and b commute.
Remark 1.2.7. In abelian groups we shall often, in accordance with Example 1.2.3, denote
the multiplication by + and the identity by 0.
Example 1.2.8. The groups of Examples 1.2.3 and 1.2.4 are abelian, while none of the
groups in 1.2.2 and 1.2.5 are abelian, when n > 2 (see Exercise 1.2.1).
Definition 1.2.9. A homomorphism from a group G to a group H is a map

Φ : G → H

such that Φ(ab) = Φ(a)Φ(b), for all a, b in G. We can illustrate this rule by the commutative
diagram

G×G
Φ×Φ−−−→ H ×Hy

y
G −−−→

Φ
H

where the vertical maps are the multiplication maps on G and H respectively.
The homomorphism Φ is called an isomorphism if it is surjective, that is all the elements

of H is the image of some element in G, and injective, that is if a and b are different
elements in G then Φ(a) and Φ(b) are different elements in H.

The kernel of the homomorphism Φ is the set
ker Φ =

{
a ∈ G

∣∣ Φ(a) = eH

}
,

and the image is the set
im Φ =

{
a ∈ H

∣∣ a = Φ(b), for some b ∈ G
}

.
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The kernel and the image of a homomorphism are groups (see Exercise 1.2.3).
Example 1.2.10. The map of groups

det : Gln(C) → C∗

that sends a matrix to its determinant is a homomorphism of groups because of the formula
det AB = det A det B. The kernel of this map is Sln(C) and the image is C∗.
Example 1.2.11. The map

Φ : Gln(C) → Sln+1

given by
Φ(A) =

(
(det A)−1 0

0 A

)

is a homomorphism of groups. Clearly, the homomorphism Φ is injective.
Example 1.2.12. The map C∗ → SO2(C), which sends t to(

1
2
(t + t−1) i

2
(t− t−1)

− i
2
(t− t−1) 1

2
(t + t−1)

)
,

is a group homomorphism (see Exercise 1.2.9).
Example 1.2.13. Let

Φ : Sn → Gln(C)

be the map sending σ to the matrix having coordinates 1 in the position (σ(i), i), for
i = 1, . . . , n, and the remaining coordinates 0. It is clear that Φ is injective.

Let ei = (0, . . . , 1, . . . , 0) be the 1 × n vector with coordinate 1 in the i’th position, for
i = 1, . . . , n. We have that

Φ(σ)tei = teσ(i).

Consequently we have that
Φ(τ)Φ(σ)tei = Φ(τ)teσ(i) = teτσ(i) = Φ(τσ)tei,

that is, Φ(τ)Φ(σ) = Φ(τσ). Thus Φ is a group homomorphism.
The image of Φ consists of matrices with determinant±1. We define the map sign: Sn →

C∗ by
sign σ = det Φ(σ), for σ ∈ Sn,

and obtain from Example 1.2.10 that
sign τσ = sign τ sign σ.

In other words, the map
sign: Sn → {±1},

into the group with two elements 1 and−1, under multiplication, is a group homomorphism.
Proposition 1.2.14. Let Φ : G → H be a homomorphism between the groups G and H,
with identity eG and eH , respectively. Then
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(i) Φ(eG) = eH .
(ii) Φ(a−1) = Φ(a)−1, for all a in G.

Proof: We have that

eH = Φ(eG)Φ(eG)−1 = Φ(eGeG)Φ(eG)−1 = Φ(eG)Φ(eG)Φ(eG)−1 = Φ(eG).

Moreover, we have that

Φ(a−1) = Φ(a−1)Φ(a)Φ(a)−1 = Φ(a−1a)Φ(a)−1 = Φ(eG)Φ(a)−1 = eHΦ(a)−1 = Φ(a)−1.

¤

Proposition 1.2.15. A homomorphism Φ : G → H of groups is injective if and only if the
kernel is {eG}. In other words, Φ is injective if and only if Φ(a) = eH implies that a = eG.

Proof: If Φ is injective then Φ(a) = eH implies a = eG, by the definition of injectivity, and
because Φ(eG) = eH .

Conversely, assume that Φ(a) = eH implies that a = eG. If Φ(a) = Φ(b), we have that

Φ(ab−1) = Φ(a)Φ(b−1) = Φ(a)Φ(b)−1 = Φ(b)Φ(b)−1 = eH .

Hence, ab−1 = eG and a = ab−1b = eGb = b. ¤

Definition 1.2.16. A subgroup H of a group G is a subset H of G such that for all a and
b in H we have that ab and a−1 are in H. A subgoup H of G is normal if bab−1 is in H for
all b in G and a in H.

Remark 1.2.17. A subgroup H of G is itself a group. Indeed, the associative law (i) of
1.2.1 holds for all elements of G and thus for all elements of H. By definition the inverse
of every element of H is in H and if a is in H then aa−1 = eG is in H, and is the identity
element in H too. When H is a subgroup of G we can consider the inclusion of H in G as
a map ϕ : H → G, which sends an element to itself, that is ϕ(a) = a, for all a in H. This
map is then a group homomorphism, often called the inclusion map.
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Exercises
1.2.1. Show that none of the groups Gln(C), Sln(C), Spn(C), Sn are abelian when n > 2.

1.2.2. Show that the composite map ΨΦ : F → H of the two homomorphisms Φ : F → G and
Ψ : G → H of groups is again a homomorphism of groups.

1.2.3. Let Φ : G → H be a homomorphism of groups.
(a) Show that the kernel and image of Φ are subgroups of G and H respectively.
(b) Show that the kernel is a normal subgroup of G.

1.2.4. Which of the following maps Gln(C) → Gln(C) are group homomorphisms?
(a) X → tX.
(b) X → X (complex conjugation).
(c) X → tX−1.
(d) X → X−1.
(e) X → A−1XA, where A is in Gln(C).

1.2.5. Does the set {A ∈ Gl2(R)| A2 = I2} form a subgroup of Gl2(R)?

1.2.6. Show that for any orthogonal matrix A over the complex numbers, the map X → tAXA
defines a group isomorphism

GS(C) → GtASA(C).

1.2.7. Show that Gl1(C) is isomorphic to C∗, and find all subgroups of these groups with a finite
number of elements.

1.2.8. A Möbius transformation of the complex plane is a map C → C which sends z in C to
az+b
cz+d , where a, b, c, d are complex numbers such that ad− bc 6= 0.

(a) Show that the Möbius transformations of the complex plane form a group under compo-
sition.

(b) Show that this group is isomorphic to one of the groups of Section 1.

1.2.9. Let C∗ be the non-zero elements of C.
(a) Show that the map C∗ → SO2(C), which sends t to(

1
2(t + t−1) i

2(t− t−1)
− i

2(t− t−1) 1
2(t + t−1)

)
,

is a group homomorphism.
(b) Let C be the subgroup of C∗ consisting of complex numbers z such that |z| = 1. Is the

restriction of Φ to C an isomorphism onto SO2(R) ⊆ SO2(C)?

1.3 Rings and fields
We have that Z, Q, R, C and Mn(C) are abelian groups under addition. They also have

a multiplication. The non-zero elements of Q, R and C form abelian groups with respect
to the multiplication, whereas the non-zero elements of Z and Mn(C) are not groups under
multiplication (see Exercise 1.3.1).
Definition 1.3.1. A ring is a set R with an addition and a multiplication, such that R
is an abelian group under addition and such that all triples of elements a, b and c of R
satisfy the following properties:
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(i) (Distributivity) (a + b)c = ab + bc and a(b + c) = ab + ac.
(ii) (Identity) There is an element 1 in R such that a1 = 1a = a.
(iii) (Associativity) a(bc) = (ab)c.

Here a + b and ab are the sum and product of a and b. We shall denote by 0 – zero –
the identity of the addition. When ab = ba for all a and b in R we say that the ring R is
commutative. The ring R is called a skew field when the non-zero elements form a group
under multiplication, that is, when every non-zero element has a multiplicative inverse. A
commutative skew field is called a field.

A subset I of a ring R is called an ideal if it is an additive subgroup, and, if for all a in
R and b in I, we have that ab is in I.
Remark 1.3.2. From the above axioms one easily verifies that the usual rules for com-
putation by numbers hold. We have, for example, 0a = (0 − 0)a = 0a − 0a = 0, and
−1a + a = −1a + 1a = (−1 + 1)a = 0a = 0, so that −1a = −a.
Example 1.3.3. We have that Q, R and C are fields.
Example 1.3.4. We have that F2 = {0, 1}, where 1+1 = 0, is a field, as is F3 = {0,±1},
where 1 + 1 = −1.
Example 1.3.5. We have that Z and Mn(C) are rings, but not fields.
Example 1.3.6. Let S be a set and R a ring. The set RS consisting of all maps from S
to R forms a ring. We define the sum f + g of two maps f : S → R and g : S → R by
(f + g)(x) = f(x) + g(x) and the product fg by (fg)(x) = f(x)g(x) (see Exercise 1.3.3).

The following example of rings is extremely important in algebra and geometry.
Example 1.3.7. (Polynomial and formal power series rings.) Let R be a commutative
ring. In the previous example we saw how the set RN of maps N → R form a ring, in a
natural way. In this example we shall give the group RN a different multiplicative structure
that also makes it into a ring.

For each element a of R we let, by abuse of notation, the map a : N → R be defined by
a(0) = a and a(i) = 0 for i > 0. In this way we consider R as a subset of RN. Moreover,
we define maps

xi : N → R, for i = 0, 1, . . . ,

by xi(i) = 1 and xi(j) = 0, when i 6= j. Given elements r0, r1, . . . of R we denote by
∞∑
i=0

rixi : N → R

the map defined by (
∑∞

i=0 rixi)(j) = rj. Clearly all maps f : N → R can be expressed
uniquely as f =

∑∞
i=0 f(i)xi. We can now define multiplication of elements f and g of RN

by

fg =
∞∑
i=0

f(i)xi

∞∑
i=0

g(i)xi =
∞∑

k=0

(
∑

i+j=k

f(i)g(j))xk.
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It is easy to check that this multiplication, together with the addition of of Example 1.3.6,
gives a ring structure on RN (Exercise 1.3.4). We note that with the given multiplication
we have that

xi
1 = x1 · · · x1 = xi.

Let x = x1. Every element can thus be uniquely written as a power series

f =
∞∑
i=0

f(i)xi,

and multiplication is similar to that for convergent power series. We denote by R[[x]] the
ring RN, with the given multiplication and call it the ring of power series in the variable
x with coefficients in the ring R.

The subset of R[[x]] consisting of elements f =
∑∞

i=0 f(i)xi such that only a finite number
of coefficients f(i) are non-zero forms a ring under the addition and multiplication induced
by those on R[[x]]. This ring is denoted by R[x] and is called the ring of polynomials in
the variable x with coefficients in the ring R.
Remark 1.3.8. The advantage of defining polynomial and power series rings with coeffi-
cients in a ring is that the construction can be used inductively to define polynomial and
power series rings in several variables. Indeed, starting with R we have constructed a poly-
nomial ring R[x1]. Then, starting with R[x1] we may construct a polynomial ring R[x1][x2],
which we denote by R[x1, x2]. In this way we can continue to construct polynomial rings
R[x1, . . . , xn] in n variables. Similarly, we can define the power series ring R[[x1, . . . , xn]]
in n variables.
Definition 1.3.9. Let R and S be rings. A map Φ : R → S is a ring homomorphism if,
for all pairs a, b of R, we have that:

(i) Φ(a + b) = Φ(a) + Φ(b).
(ii) Φ(ab) = Φ(a)Φ(b).
(iii) Φ(1) = 1.

Remark 1.3.10. Since there need not be any inverses of the elements with respect to mul-
tiplication, we have to let Φ(1) = 1 be an axiom, while in a group it follows immediately
that a homomorphism has to map the identity element to the identity element.

The kernel of a ring homomorphism is the set ker Φ = {a ∈ R : Φ(a) = 0}, that is, the
kernel of the map of additive groups. When R is a subset of S such that the inclusion
map is a ring homomorphism and such that ab = ba for all a in R and b in S, we call R a
subring of S and we say that S is an algebra over R, or an R-algebra.
Example 1.3.11. We have seen that Z ⊂ Q ⊂ R ⊂ C is a sequence of subrings, and that
the same is true for the sequence R ⊂ R[x] ⊂ R[[x]]. In particular we have that R[x] and
R[[x]] are R-algebras.
Example 1.3.12. Let M2(R) be the set of all 2 × 2 matrices with real coordinates, and
let

Φ : C → M2(R)
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be the map defined by
Φ(z) = Φ(x + iy) =

(
x y
−y x

)
.

Then Φ is an injective ring homomorphism (see Exercise 1.3.5).
Example 1.3.13. Let M4(R) be the set of 4× 4 matrices with real coordinates. Let

H =

{(
a b c d
−b a −d c
−c d a −b
−d −c b a

) ∣∣∣∣ a, b, c, d in R

}
.

Moreover, let
i =

(
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

)
, j =

(
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)
, k =

(
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)
.

Every element in H can be written uniquely in the form a + ib + jc + kd, for real numbers
a, b, c, d, where we write a instead of aI4. Consequently the sum of two elements in H is
again in H. We have relations

ij = k, jk = i, ki = j, and i2 = j2 = k2 = −1. (1.3.13.1)
From the relations 1.3.13.1 it follows that the product of two elements in H is again in H.
The set H with the addition and multiplication induced by the addition and multiplication
in M4(R) is a ring (see Exercise 1.3.6). Consider C as the subset x + iy + j0 + k0 of H.
Then C is a subring of H (see Exercise 1.3.6).

Every non-zero element a + ib + jc + kd of H has the inverse (a2 + b2 + c2 + d2)−1(a−
ib− jc− kd). Hence H is a skew field called the quaternions. It is however, not a field (see
Exercise 1.3.6).
Example 1.3.14. We have a ring homomorphism H → Gl2(C) defined by

a + ib + jc + kd 7−→
(

a + ib c + id
−c + id a− ib

)
.

This homomorphism sends the subset {a+ib+jc+kd
∣∣ a2+b2+c2+d2 = 1} isomorphically

onto Sp2(C) (see Exercise 1.3.8).
Example 1.3.15. Let R be a ring. We can define a new ring R[ε], sometimes called the
ring of dual numbers, as follows:

As a group R[ε] is the set R×R with addition defined by (a, b) + (c, d) = (a + c, b + d).
This clearly defines an additive group with zero (0, 0). We define a multiplication on R×R
by (a, b)(c, d) = (ac, ad + bc). It is easily checked that R × R becomes a ring R[ε] with
zero 0 = (0, 0) and unit 1 = (1, 0).We define the multiplication of an element a of R with
(b, c) by a(b, c) = (ab, ac). Write ε = (0, 1), and identify R with the subring of R[ε] via
the homomorphism R → R[ε] that maps a to (a, 0). Every element in R[ε], can be written
uniquely as (a, b) = a + bε, and the multiplication is given by the multiplication of R and
the rule ε2 = 0.
Example 1.3.16. The kernel of a homomorphism S → R of rings is an ideal in S (see
Exercise 1.3.7).
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Remark 1.3.17. Let K be a field. We write n for the sum 1+ · · ·+1 of the unit in K taken
n times. There are two possibilities:

(i) We have that none of the elements n are equal to 0 in K. For each pair of elements
m and n of K we can then define the element m/n = mn−1. We can define a map
Q → K by sending m/n in Q to m/n in K. Clearly, this map is injective. In this
case we say that K has characteristic 0 and consider Q as a subfield of K.

(ii) There is an integer n such that n is 0 in K. Since −n = 0 if n = 0 in K we can
assume that n is positive. Let p be the smallest positive integer such that p = 0
in K. Then p is a prime number because if p = qr we have that p = qr in K and
hence p = 0 implies that q = 0 or r = 0, since K is a field. In this case we obtain a
ring homomorphism Z → K with kernel pZ. We say that K has characteristic p.

Example 1.3.18. The group {0, 1} with two elements, where 1 + 1 = 0, is a field of
characteristic 2.

Exercises
1.3.1. Show that the non-zero elements of Z and Mn(C) are not groups under multiplication.

1.3.2. Show that the only ideals of a field K are (0) and K.

1.3.3. Show that the set RS of Example 1.3.6 with the addition and multiplication given there
form a ring.

1.3.4. Show that the set RN with the addition and multiplication given in Example 1.3.7 form a
ring.

1.3.5. Show that the map Φ of Example 1.3.12 is a ring homomorphism.

1.3.6. Show that the set H of Example 1.3.13 is a ring which is not commutative and that C is
a subring via the inclusion of that example.

1.3.7. Prove that the kernel of a ring homomorphism S → R is an ideal in S.

1.3.8. Show that the map H → Gl2(Z) of Example 1.3.14 is a homomorphism of rings.

1.3.9. Let S be a set and G a group. We say that G acts on S if there is a group homomorphism
Φ : G → SS to the symmetric group of the set S. For x in X and g in G we write gx = Φ(g)(x).
The subset

Gx = {gx
∣∣ g ∈ G}

of S is called the orbit of x, and the subset
Gx = {g ∈ G

∣∣ gx = x}
of G is called the stabilizer of x.

(a) Assume that G has a finite number |G| of elements. Show that
|G| = |Gx| |Gx|.

(b) Let K be a field with q elements. Compute |Gln |, |Sln|, and |On|. If you do not succeed
proving part (b) for arbitrary n, then try small values of n.
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1.4 Matrix groups over arbitrary fields
Most of the theory of matrices that we shall need holds for matrices with coefficients

in arbitary fields. The basic results are similar, and and the techniques for proving them
are independent of the field. In this section we shall introduce generalizations to arbitrary
fields of the classical matrix groups of Section 1.1.

Fix a field K. Denote by Mm,n(K) the set of m×n matrices with coordinates in K, and
let Mn(K) = Mn,n(K). The determinant of a matrix A = (aij) in Mn(K) is the expression

det A =
∑

σ∈Sn

sign σ a1σ(1) · · · anσ(n).

For a pair of matrices A, B of Mn(K) we have that
det(AB) = det A det B

(see Exercise 1.4.1). Moreover, for each matrix A of Mn(K), there is an adjoint matrix B
such that

AB = BA = (det A)In

(see Exercise 1.4.2). Consequently, when A is non-singular, that is det A 6= 0, then A has
the inverse (det A)−1B. Hence, the matrices Gln(K) in Mn(K) with non-zero determinant
form a group. Moreover, the subset Sln(K) of Gln(K) consisting of matrices of determinant
1 form a subgroup. These groups are called the general linear group respectively the special
linear group over K.

We have that, for a fixed matrix S in Mn(K), the subset GS(K) of matrices A in Gln(K)
such that

tASA = S

form a subgroup of Gln(K), as does the subset SGS(K) of GS(K) consisting of matrices
with determinant 1 (see Exercise 1.4.4). The particular cases when S = In, that is matrices
that satisfy

tAA = In,

are denoted by On(K) and SOn(K) and called the orthogonal group respectively special
orthogonal group over K.

Remark 1.4.1. As we indicated in 1.1.1 we shall, in Sections 1.7 and 1.8 interpret the
orthogonal and symplectic groups in terms of bilinear forms, and we shall see that there
are more groups which it is natural to call orthogonal.

Finally, let Jm be the matrix in Mm(K) with 1 on the antidiagonal, that is the elements
aij with i + j = m + 1 are 1, and the remaining coordinates 0. Take

S =

(
0 Jm

−Jm 0

)
. (1.4.1.1)

The corresponding set GS(K) is denoted by Sp2m(K) and is called the symplectic group
over K. When we write Spn(K)(K) we always assume that n is even.
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Exercises
1.4.1. Show that, for a pair of matrices A, B of Mn(K), we have that

det(AB) = detA detB.

1.4.2. For each matrix A of Mn(K), the adjoint matrix B is defined by Bij = (−1)i+j detA(j,i),
where A(i,j) denotes the submatrix of A obtained by deleting the i’th row and the j’th column.
Show that B satisfies

AB = BA = (detA)In.

1.4.3. Let ai1x1 + · · ·+ ainxn = bi, for i = 1, . . . , n be a system of n equations in the n variables
x1, . . . , xn. Show that if the n × n matrix A = (aij)i=1,...n,j=1,...,n is non-singular, then the
equations have a unique solution given by ai = (−1)i det Ai

det A , where Ai is the matrix obtained from
A by substituting the column t(b1, . . . , bn) for the i’th column of A.

1.4.4. Show that, for a fixed matrix S in Mn(K), the subset GS(K) of matrices A in Gln(K)
such that

tASA = S

form a subgroup of Gln(K), as does the subset SGS(K) of GS(K) consisting of matrices with
determinant 1.

1.4.5. Determine the 1-dimensional Lorentz group. That is, all matrices A in Mn(R) such that
tA

(
1 0
0 −1

)
A =

(
1 0
0 −1

)
.

1.4.6. Let K = R. Show that SO2(R) consists of the matrices
(

cos θ sin θ
− sin θ cos θ

)
. Determine O2(R).

1.4.7. Let K be the field with 2 elements. That is K = {0, 1}, with 1+1 = 0. Determine Gl2(K),
Sl2(K), O2(K), SO2(K), and Sp2(K). Which of these groups are isomorphic?

1.4.8. Determine the 1-dimensional Lorentz group. That is, all matrices A in Mn(R) such that
tA

(
1 0
0 −1

)
A =

(
1 0
0 −1

)
.

1.5 Generators for groups
Given a group G and elements {ai}i∈I of G. The intersection of all subgroups of G that

contain all the elements ai we denote by G′. The intersection of any family of sugroups of
a group G is again a subgroup of G (see Exercise 1.5.1). Consequently we have that G′

is a group. We call this group the group generated by the elements {ai}i∈I and say that
these elements are generators of the group G′. The elements of G′ can be expressed in an
explicit way as follows:

Let G′′ be the set of all elements of the form

ad1
i1

ad2
i2
· · · adm

im
, (1.5.0.2)

for all m ∈ N, for all sequences {i1, i2, . . . , im} of elements in I and for all sequences
{d1, d2, . . . , dm} of exponents ±1. Clearly the set G′′ is a subgroup of G. Hence G′′ ⊆ G′.
On the other hand we have that all the element of G′′ have to be in any subgroup of G
that contains all ai. Consequently we have that G′ = G′′.
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Example 1.5.1. The additive group Z is generated by the element 1, and the additive
group of Q is generated by all elements of the form 1/pn, where n ∈ N and p is a prime
number.

We shall, in the following, find generators for the groups of Section 1.4.
To find the generators for Gln(K) and Sln(K) we use a well known method of linear

algebra often called Gaussian elemination. We recall how this is done. Let Eij(a), for
i, j = 1, . . . , n and i 6= j be the matrices of Mn(K) that have 1’s on the diagonal, a ∈ K
in the (i, j)-coordinate, and 0 in all other coordinates. We shall call the matrices Eij(a)
the elementary matrices. Clearly, det Eij(a) = 1, so Eij(a) is in Sln(K). For every matrix
A in Mn(K) we have that the matrix Eij(a)A is obtained from A by adding a times the
j’th row of A to the i’th and leaving the remaining coordinates unchanged. Similarly
AEij(a) is obtained by adding a times the i’th colunm of A to the j’th and leaving the
remaining coordinates unchanged. In particular Eij(a)Eij(−a) = In so that the inverse of
an elementary matrix is again elementary.
Proposition 1.5.2. The group Sln(K) is generated by the elementary matrices, and the
group Gln(K) is generated by the elementary matrices and the matrices of the form(

In−1 0
0 a

)
(1.5.2.1)

with a 6= 0 in K.

Proof: Let A be in Gln(K). Not all the entries in the first column are zero. If ai1 is not
zero for some i > 1, we multiply A to the left with E1i(a

−1
i1 (1− a11)) and obtain a matrix

whose (1, 1) coordinate is 1. On the other hand, if a11 is the only non-zero entry in the
first column, we multiply A to the left with E21(1)E21(a

−1
11 (1 − a11)), and again obtain a

matrix whose (1, 1) coordinate is 1. We can now multiply the resulting matrix, to the right
and to the left, with matrices of the form E1i(a), respectively Ei1(a), to obtain a matrix
of the form (

1 0
0 A′

)
,

for some A′ in Gln−1(K). We can thus use induction on n to reduce the (n− 1)× (n− 1)
matrix in the lower right corner to a matrix of the form 1.5.2.1, using only elementary
matrices of the form Eij(a), with i, j > 1.

Thus multiplying the matrix A to the left and to the right with elementary matrices it
can be put in the form 1.5.2.1. Multiplying with the inverses of the elementary matrices
that appear we obtain the assertion of the proposition for Gln(K). To prove it for Sln(K)
we only have to observe that, since the elementary matrices are in Sln(K), we have that
the resulting matrix 1.5.2.1 also must be in this group. Consequently, we must have that
a = 1. ¤

In order to find generators for the groups On(K), SOn(K) and Spn(K) it is convenient
to introduce vector spaces over arbitrary fields and to view the elements of these groups
as automorphisms of bilinear forms. We shall do this in Sections 1.6 and 1.7.
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Exercises
1.5.1. Show that the intersection of any family of subgroups of a group is again a subgroup.

1.5.2. Write the matrix
(

a b
c d

)
in Sl2(K) as a product of elementary matrices.

1.6 Vector spaces
In order to fully understand the nature of the matrix groups that were introduced in

Section 1.4, they must be considered as automorphisms of bilinear forms on vector spaces.
We shall show how this is done in Section 1.8. In this section we shall recall the relevant
properties of vector spaces. The results we need and the methods used are the same for all
fields. Consequently we discuss vector spaces over arbitrary fields. We assume that most
of the basic theory is well known from a first course in linear algebra, and therefore leave
many details to the reader as exercises.

Fix a field K and Let V be an abelian group. We shall denote the addition in K and V
by + and the zero for the addition by 0. It will be clear from the context in which of the
abelian groups K or V we perform the addition.
Definition 1.6.1. The group V is a vector space over K if there is a map

K× V → V,

such that, for each pair of elements a, b of K and x, y of V , the following four properties
hold:

(i) (a + b)x = ax + bx,
(ii) a(x + y) = ax + ay,
(iii) a(bx) = (ab)x,
(iv) 1x = x,

where we denote by ax the image by the element (a, x). We call the elements of K scalars
and the elements of V vectors.
Remark 1.6.2. From the properties (i)-(iv) we can deduce all the usual rules for manipu-
lation of numbers. For example we have that 0x = (0 + 0)x = 0x + 0x. Subtracting 0x on
both sides, we get that 0x = 0, where the zero to the left is in K, and the one to the right
is in V . Similarly, we have that a0 = a(0 + 0) = a0 + a0. Subtracting a0 on both sides, we
get that a0 = 0. Moreover, we have that −1x + x = −1x + 1x = (−1 + 1)x = 0, such that
−x = −1x. Thus −ax = (a(−1))x = a(−1x) = a(−x).

The following definition gives the most important example of vector spaces.
Definition 1.6.3. The n’th Cartesian product Kn, considered as an abelian group via
coordinatewise addition, that is x + y = (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn),
is a vector space over K under the multiplication which sends a in K and x = (a1, . . . , an)
to (aa1, . . . , aan). We will denote this vector space by , or sometimes just V n.

In particular the set Mm,n(K) is a vector space over K. We shall often consider V n
K as

the set Mn,1, when we want to operate with an n × n-matrix on V n
K by multiplication on

the left. It will be clear from the context whether the element is considered as an n-tuple
or as an n× 1-matrix.
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Example 1.6.4. Let V and W be two vector spaces over K. We define a vector space,
called the direct sum of V and W , and denoted by V ⊕W , as follows:

The set V ⊕W is the Cartesian product V ×W . We add two elements (x, y) and (x′, y′)
by the rule (x, y) + (x′, y′) = (x + x′, y + y′), and multiply by an element a of K by the
rule a(x, y) = (ax, ay). It is clear that that V ⊕W becomes a vector space. We write x+ y
instead of (x, y).

Example 1.6.5. Let V and W be two vector spaces over K. We define a structure as vector
space, called the direct product of V and W , on V ×W by defining the sum (x, y)+ (x′, y′)
of two vectors (x, y) and (x′, y′) to be (x + x′, y + y′) and the scalar product a(x, y) of an
element a of K with the vector (x, y) to be (ax, ay).

Remark 1.6.6. As we have defined direct sum and direct product, above, there is nothing
but the notation that differs, but in principle they are different concepts and we shall
distinguish between them.

Definition 1.6.7. Let V be a vector space over K. A set of vectors {xi}i∈I generates V if
all elements x in V can be written in the form

x = a1xi1 + · · ·+ anxin ,

for some indices i1, . . . , in of I and elements a1, . . . , an of K. The vectors {xi}i∈I are linearly
independent over K if there is no relation of the form

a1xi1 + · · ·+ anxin = 0,

where i1, . . . , in in I, and a1, . . . , an are elements in K, that are not all zero.
The space V is finitely generated if there is a set of generators with finitely many elements.

A set of generators consisting of linearly independent elements is called a basis for V .

Example 1.6.8. The vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) form a basis for the space V n
K,

called the standard basis.

The following is the main result about generators and linear independence in finitely
generated vector spaces:

Theorem 1.6.9. Let V be a vector space that has generators x1, . . . , xm. Then any set of
linearly independent elements contains at most m elements. Moreover, given a (possibly
empty) subset xi1 , . . . , xir of x1, . . . , xm, consisting of linearly independent elements of V ,
then it can be extended to a subset {xi1 , . . . , xin} of {x1, . . . , xm} that is a basis of V .

Proof: First consider the case m = 1. Assume that y1, . . . , yn are linearly independent
vectors in V , where n > 1. Then we have that y1 = a1x1 and y2 = a2x1 for two nonzero
elements a1 and a2 of K. We obtain that a2y1 − a1y2 = a2a1x1 − a1a2x1 = 0, which
contradicts the linear independence of y1 and y2. Hence any set of linearly independent
vectors in V contains at most one element.

Consequently, we can proceed by induction on m. Assume that the first part of the
theorem holds for m − 1. Let y1, . . . , yn be linearly independent vectors in V . We shall
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show that n ≤ m. Assume, to the contrary, that n > m. To obtain a contradiction we
only need to consider the vectors y1, . . . , ym+1, that is, we consider the case n = m + 1.
Since the xi generate V we have that

yi =
m∑

j=1

aijxj,

for i = 1, . . . , m + 1 and for some aij. Since the yi are nonzero, there is an aij which is
nonzero, for each i. Renumbering the xj if necessary, we may assume that am+1,m 6= 0.
The vectors

y′i = yi − ai,m

am+1,m

ym+1 =
m−1∑
j=1

(aij − ai,m

am+1,m

am+1,j)xj, for i = 1, . . . , m

are in the vector space W spanned by x1, x2, . . . , xm−1. Hence by the induction hypothesis
we have that any set of linearly independent vectors in W contains at most m−1 elements.

However, y′1, y
′
2, . . . , y

′
m are linearly independent because, if

∑m
i=1 biy

′
i = 0, for some bi,

not all zero, we get that
∑m

i=1 bi(yi−(ai,m/am+1,m)ym+1) = 0. This implies that
∑m

i=1 biyi−
(
∑m

i=1 biai,m/am+1,m)ym+1 = 0, which contradicts the linear independence of y1, . . . , ym+1.
Thus we have a contradiction to the assumption that n > m, which proves the first part
of the theorem.

For the second part, denote by W the vector space generated by the linearly inde-
pendent vectors xi1 , . . . , xir . If V = W we have finished. If not, there is a vector
xir+1 among x1, . . . , xn which is not in W . Then the vectors xi1 , . . . , xir+1 are linearly
independent, because if we have a linear dependence a1xi1 + · · · + ar+1xir+1 = 0, then
ar+1 6= 0, since the first r vectors are linearly independent. Consequently, we obtain that
xir+1 = −(a1/ar+1)xi1 − · · · − (ar/ar+1)xir , which contradicts the choise of xir+1 outside of
W . If the vector space generated by xi1 , . . . , xir+1 is V we have finished the proof. If not we
can pick a vector xir+2 among x1, . . . , xm such that xi1 , . . . , xir+2 are linearly independent.
In this way we can continue until we find a subset {xi1 , . . . , xin} of {x1, . . . , xm} that is a
basis of V . We have proved the second part of the theorem. ¤

It follows from Theorem 1.6.9, that when V is finitely generated, the smallest number of
generators is equal to the largest number of linearly independent elements. This number
is called the dimension of V , and denoted dimK V . It also follows from the theorem that
every finite dimensional vector space has a basis, and that all bases have the same number,
dimK V , of elements (see Exercise 1.6.2).
Definition 1.6.10. Let V and W be two vector spaces over K. A map

Φ : V → W

is K-linear, or simply linear if, for all elements a in K and all pairs x, y of elements of V ,
we have that:

(i) Φ(x + y) = Φ(x) + Φ(y).
(ii) Φ(ax) = aΦ(x).

A linear map is an isomorphism if it is injective and surjective.
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Example 1.6.11. Let V n
K and V m

K be the vector spaces of Example 1.6.3, and let A = (aij)
be an m× n matrix. The map A : V n

K → V m
K , which sends (a1, . . . , an) to At(a1, . . . , an) is

linear.
Let U , V and W be vector spaces over K and let Φ : U → V and Ψ : V → W be K-linear

maps. Then the composite map ΨΦ : U → W is a linear map (see Exercise 1.6.3).
Definition 1.6.12. Let Φ : V → W be a linear map between vector spaces over K. The
kernel of Φ is

ker Φ =
{
x ∈ V

∣∣ Φ(x) = 0
}

,

and the image is
im Φ =

{
Φ(x)

∣∣ x ∈ V
}

.

Hence the kernel and image are the same as for maps of abelian groups.
When V is a subset of W and Φ is the inclusion, we say that V is a subspace of W . The

image of a map Φ : V → W is a subspace of W and the kernel a subspace of V .
Let U and V be two subspaces of a vector space W . If every vector z in W can be

written uniquely as x + y, with x in U and y in V we say that W is the direct sum of U
and V , and write .
Lemma 1.6.13. Let V be a finite dimensional vector space and let Φ : V → W a linear
map to a vector space W . Then ker Φ and im Φ are both finite dimensional and

dimK V = dimK ker Φ + dimK im Φ.

In particular, if dimK V = dimK W , then Φ is injective, or surjective, if and only if Φ is
an isomorphism.

Proof: It follows from Theorem 1.6.9 that ker Φ is finite dimensional. Since V is generated
by a finite number of elements, the same is true for im Φ. Hence im Φ is finite dimensional.
Choose a basis x1, . . . , xr of ker Φ, and a basis y1, . . . , ys of im Φ. Moreover, choose elements
xr+1, . . . , xr+s of V such that Φ(xr+i) = yi for i = 1, . . . , s.

Then x1, . . . , xr+s is a basis of V . In fact, we have that the vectors x1, . . . , xr+s are lin-
early indepenedent because if a1x1 + · · ·+ar+sxr+s = 0 then 0 = Φ(a1x1 + · · ·+ar+sxr+s) =
ar+1y1 + · · · + ar+sys, and hence ar+1 = · · · = ar+s = 0 since y1, . . . , ys are linearly inde-
pendent. Then a1x1 + · · · + arxr = 0, so that a1 = · · · = ar = 0 because x1, . . . , xr are
linearly independent. We also have that the vectors x1, . . . , xr+s generate V because for x
in V we have that Φ(x) = b1y1 + · · · + bsys for some elements b1, . . . , bs in K. But then
x−b1xr+1−· · ·−bsxr+s is in ker Φ and can consequently be written as c1x1+ · · ·+crxr+s for
some elements c1, . . . , cr in K. Hence we have that x = c1x1+· · ·+crxr+b1xr+1+· · ·+bsxr+s.

Since x1, . . . , xr+s is a basis of V we have that dimK(V ) = r+s, and since r = dimK ker Φ
and s = dimK im Φ by definition, we have proved the first part of the Lemma.

Assume that dimK V = dimK W . If Φ is injective then dimK V = dimK im Φ. Hence
dimK im Φ = W , such that Φ is surjective. Conversely, if Φ is surjective, that is, we
have that im Φ = W we have that dimK V = dimK ker Φ + dimK W , and hence that
dimK ker Φ = 0. Consequently ker Φ = 0, and Φ is injective. ¤
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1.6.14. We denote by HomK(V,W ) the set of all linear maps between the vector spaces V
and W . The sum of two linear maps Φ and Ψ and the product of a linear map by a scalar
a are defined by

(Φ + Ψ)(x) = Φ(x) + Ψ(x),

and
(aΦ)(x) = aΦ(x).

With these operations we have that HomK(V, W ) is a vector space (see Exercise 1.6.4).
The case when W = K is particularly important. In this case we denote the vector space

HomK(V,K) by V̌ and call this space the dual space of V .
We denote the space HomK(V, V ) by M(V ) and the subset consisting of isomorphisms

by Gl(V ). Moreover we define the product of two elements Φ and Ψ of Gl(V ) to be the
composite map ΦΨ . With this product we have that Gl(V ) is a group. We call Gl(V ) the
general linear group of V .

1.6.15. Let {vi}i∈I be a basis for V . A linear map Φ : V → W is uniquely determined
by its values Φ(vi) on the basis for i ∈ I. Conversely, given vectors {wi}i∈I in W , then
there is a unique linear map Ψ : V → W such that Ψ(vi) = wi, for i ∈ I. We have, for
x = a1vi1 + · · ·+ anvin , that Ψ(x) = a1wi1 + · · ·+ anwin (see Exercise 1.6.5).

In particular, let
v̌i : V → K

be the linear map defined by v̌i(vi) = 1 and v̌i(vj) = 0, for i 6= j. The vectors {v̌i}i∈I are
linearly independent, and if V is finite dimensional, they span V̌ , and we say that {v̌i}i∈I

is the dual basis of {vi}i∈I . In particular, when V is finite dimensional, we obtain that
dimK V = dimK V̌ (see Exercise 1.6.5).

Remark 1.6.16. Let v1, . . . , vn be a basis for V . Then we obtain a canonical isomorphism
of vector spaces

Ψ : V → V n
K

defined by Ψ(a1v1 + · · ·+anvn) = (a1, . . . , an). Hence every finite dimensional vector space
is isomorphic to some space V n

K. This explains the importance of the spaces V n
K.

1.6.17. Let v1, . . . , vn be a basis for the vector space V , and let w1, . . . , wm be a basis for the
vector space W . A linear map Φ : V → W determines uniquely an m×n-matrix A = (aij)
in Mm,n(K) by the formula

Φ(vi) = a1iw1 + · · ·+ amiwm, for i = 1, . . . , n.

Conversely, every matrix in Mm,n(K) determines uniquely a linear map V → W , by the
same formula. That is, we have a bijective correspondence

HomK(V, W ) → Mm,n(K). (1.6.17.1)

The map 1.6.17.1 is an isomorphism of vector spaces.
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Let Θ : W → V m
K be the isomorphism corresponding to the basis w1, . . . , wm of W . Then,

if A is the matrix corresponding to a linear map Φ : V → W , we have the commutative
diagram

V
Φ−−−→ W

Ψ

y
yΘ

V n
K

ΘΦΨ−1−−−−→ V m
K ,

(1.6.17.2)

where the lower map ΘΦΨ−1 is given by the matrix A. That is, it sends t(a1, . . . , an) to
At(a1, . . . , an).

Remark 1.6.18. When we relate the linear maps to their expression as matrices with respect
to given bases the notation becomes confusing. Indeed, it is natural to consider the vectors
of V n

K as n × 1-matrices. However, if Φ : V n
K → V m

K is a linear map, and A its associated
matrix with respect to the standard bases, we have that Φ(a1, . . . , an) = (b1, . . . , bm), if
and only if At(a1, . . . , an) = t(b1, . . . , bm). Hence, to use the functional notation, and avoid
the monstrous (b1, . . . , bm) = t(At(a1, . . . , an)) = (a1, . . . , an)tA, we often consider V n

K as
Mn,1(K) as mentioned in 1.6.3. The above is one argument for using the notation (x)f for
the value of a function f at an element x. Another reason is that the latter notation looks
better when we take composition of functions.

Let B and C be the invertible matrices that represent Ψ respectively Θ with respect
to the given bases of V and W , respectively, and the standard basis of V n

K. Then Φ is
expressed by CAB−1 with respect to the bases v1, . . . , vn and w1, . . . , wm of V respectively
W . In particular, when V = W and vi = wi we have that Φ is expressed by BAB−1.
Consequently det A is independent of the choise of basis for V and we can define det Φ to
be det A = det(BAB−1).

Definition 1.6.19. The subset of Gl(V ) consisting of linear maps with determinant 1 is
clearly a subgroup. This group is called the special linear group of V and is denoted by
Sl(V ).

In order to define the orthogonal and symplectic groups in this coordinate free form we
shall introduce bilinear maps on vector spaces.

Exercises
1.6.1. Show that in example 1.6.11 we have that kerA consists of all solutions (a1, . . . , an) to the
equations ai1x1 + · · ·+ ainxn = 0, for i = 1, . . . , n, in the n variables x1, . . . , xn, and the image is
the subspace of V n

K generated by the columns t(a1j , . . . , amj) of A, for j = 1, . . . , n.

1.6.2. Let V be a finite dimensional vector space over K. Prove that V has a basis and that the
following numbers are equal

(a) The smallest number of generators of V .
(b) The largest number of linearly independent elements in V .
(c) The number of elements of any basis of V .
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1.6.3. Prove that if U , V and W are vector spaces over K and that Φ : U → V and Ψ : V → W
are K-linear maps. Then the composite map ΨΦ : U → W is a K-linear map.

1.6.4. Show that HomK(V, W ) is a vector spaces with the addition and scalar multiplication given
in 1.6.14

1.6.5. Let V be a finite dimensional vector space with basis {vi}i∈I and let W be another vector
space.

(a) Show that a linear map Φ : V → W is uniquely determined by the images Φ(vi), for i ∈ I.
(b) Let {wi}i∈I be elements of W . Show that there is a uniqe linear map Φ : V → W such

that Φ(vi) = wi, for all i ∈ I.
(c) Show that dimK V = dimK V̌ .

1.6.6. Let V and W be vector spaces and {v1, v2, . . . , vn} and {w1, w2, . . . , wm}, bases for V
respectively W . Show that there is a bijective map

HomK(V, W ) → Mm,n(K),

which is also an isomorphism of vector spaces.

1.7 Bilinear forms
Let V be a finite dimensional vector space over a field K.

Definition 1.7.1. Let V1, V2 and W be vector spaces. A bilinear map from the Cartesian
product (see Example 1.6.5) V1 × V2 to W is a map

Φ : V1 × V2 → W,

such that, for each scalar a of K, and each pair of vectors x1, y1 in V1 and x2, y2 in V2, we
have that:

(i) Φ(x1 + y1, x2) = Φ(x1, x2) + Φ(y1, x2),
(ii) Φ(x1, x2 + y2) = Φ(x1, x2) + Φ(x1, y2),
(iii) Φ(ax1, x2) = Φ(x1, ax2) = aΦ(x1, x2).
A bilinear form on a vector space is a bilinear map

〈 , 〉 : V × V → K.

It is symmetric if 〈x, y〉 = 〈y, x〉 for all vectors x and y and it is alternating if 〈x, x〉 = 0
for all vectors x. Let S be a subset of V . A vector x of V is orthogonal to S if 〈x, y〉 = 0
for all vectors y in S. We write

S⊥ = {x ∈ V
∣∣ 〈x, y〉 = 0, for all y ∈ S}.

Remark 1.7.2. An easier way to phrase that a map V1 × V2 → W is bilinear, is that,
for each vector x1 in V1 and x2 in V2 we have that the maps Φ(∗, x2) : V1 → W and
Φ(x1, ∗) : V2 → W , sending y1 to Φ(y1, x2), respectively y2 to Φ(x1, y2), are linear. Similarly,
one can define multilinear maps

Φ : V1 × · · · × Vn → W,
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as maps such that Φ(x1, . . . , ∗, . . . , xn) : Vi → W , are linear for all xj in Vj with j =
1, . . . , i− 1, i + 1, . . . , n.

For each bilinear form 〈 , 〉 : V × V → K we have associated a linear map

Ψ : V → V̌ ,

which maps x in V to the map Ψ(x) : V → K defined by Ψ(x)(y) = 〈x, y〉. The kernel of
Ψ is V ⊥.

Definition 1.7.3. We say that the form 〈 , 〉 : V × V → K is non-degenerate if Ψ is
injective, that is, if V ⊥ = 0, or equivalently, if 〈x, y〉 = 0 for all y ∈ V implies that x = 0.

Assume that V is finite dimensional. Since dimK V = dimK V̌ by Paragraph 1.6.15,
we have that Ψ is injective if and only if it is an isomorphism. Assume that the form
is non-degenerate. Fix y in V . If we have that 〈x, y〉 = 0 for all x in V we have that
Ψ(x)(y) = 0 for all x in V . However, since Ψ is surjective, it then follows that α(y) = 0
for all linear maps α : V → K. Consequently y = 0 (see Exercise 1.7.1). We have proved
that for a non-degenerate form 〈x, y〉 = 0 for all x in V implies that y = 0. Consequently,
the condition to be non-degenerate is symmetric in the two arguments. That is, when the
form is non-degenerate the linear map

Φ : V → V̌ ,

which maps y in V to the map Φ(y) : V → K, defined by x to Ψ(y)(x) = 〈x, y〉, is an
isomorphism.

Lemma 1.7.4. Let V be a finite dimensional vector space with a non-degenerate form,
and let W be a subspace. Then we have that

dimK V = dimK W + dimK W⊥.

Proof: We have a canonical linear map V̌ → W̌ , that maps α : V → K to α|W : W → K.
This map is surjective, as is easily seen by choosing a basis for W and extending it to a basis
of V , see theorem 1.6.9 and Paragraph 1.6.17. Composing the isomorphism Ψ : V → V̌ ,
associated to the bilinear form with this surjection, we obtain a surjective map V → W̌
with kernel W⊥. Consequently the lemma follows from Lemma 1.6.13. ¤

Lemma 1.7.5. Let V be vector space with a non-degenerate form 〈 , 〉, and let W be a
subspace. If W ∩W⊥ = 0 then we have that V = W ⊕W⊥ and the form 〈 , 〉 induces a
non-degenerate form on W⊥.

Proof: If U = W + W⊥, we have that U = W ⊕ W⊥ since W ∩ W⊥ = 0. It follows
from Lemma 1.7.4 that dimK V = dimK W + dimK W⊥. Hence U is a subspace of V of
dimension dimK V . Consequently U = V and we have proved the second assertion of the
lemma. ¤
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Definition 1.7.6. Let V be a vector space with a non-degenerate bilinear form 〈 , 〉, and
let α : V → V be a linear map. For each y in V we obtain a linear map V → K which
maps x in V to 〈α(x), y〉. Since the linear map Ψ : V → V̌ associated to the form is an
isomorphism, there is a unique vector y′ in V such that 〈α(x), y〉 = 〈x, y′〉, for all x in V .
The homomorphism

α∗ : V → V

that maps y to y′ is determined by the condition 〈α(x), y〉 = 〈x, α∗(y)〉 for all x and y in
V and is clearly linear. It is called the adjoint of α.

It is clear from the definition that, given two maps α and β of HomK(V, V ) and a scalar
a of K, we have the formulas

(α∗)∗ = α, (α + β)∗ = α∗ + β∗, (aα)∗ = aα∗.

Definition 1.7.7. Two bilinear forms 〈 , 〉f and 〈 , 〉g on V are equivalent if there is an
isomorphism α : V → V such that

〈α(x), α(y)〉f = 〈x, y〉g,
for all pairs x, y of V .

1.7.8. Let 〈 , 〉 be a bilinear form on V . Fix a basis e1, . . . , en of V and let S = (cij) be the
n × n matrix with (i, j)’th coordinate cij = 〈ei, ej〉. Then, for x = a1e1 + · · · + anen and
y = b1e1 + · · ·+ bnen we have that

〈x, y〉 = (a1, . . . , an)




c11 . . . c1n
... . . . ...

cn1 . . . cnn







b1
...
bn


 =

n∑
i,j=1

aicijbj.

If follows, in particular, that the form is non-degenerate if and only if the matrix S is
non-singular.

Let α : V → V be a linear map, and let A = (aij) be the corresponding matrix map as
in Paragraph 1.6.17. The adjoint map α∗ corresponds to the matrix S−1tAS.

We have that the bilinear form is symmetric if and only if S is symmetric, that is S = tS,
and it is alternating if and only if S = −tS and cii = 0 for i = 1, . . . , n.

Let f1, . . . , fn be another basis for V and let T be the matrix associated to the bilinear
form, with respect to this basis. Moreover, let A = (aij) be the non-singular matrix defined
by fi =

∑
j=1 ajiej. Then x =

∑n
i=1 cifi =

∑n
i=1 aiei, and y =

∑n
i=1 difi =

∑n
i=1 biei with

t(a1, . . . , an) = At(c1, . . . , cn), respectively t(b1, . . . , bn) = At(d1, . . . , dn). Hence 〈x, y〉 =
(a1, . . . , an)St(b1, . . . , bn) = (c1, . . . , cn)tASAt(d1, . . . , dn). Consequently we have that

T = tASA.
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Exercises
1.7.1. Let V be a vector space and y a vector of V . Show that if α(y) = 0 for all α in V̌ , we have
that y = 0.

1.8 The orthogonal and symplectic groups
Let V be a vector space over K, with a non-degenerate bilinear form 〈 , 〉. In the case

of a symmetric bilinear form we will always assume that 2 is an invertible element of the
field K, i.e., that the characteristic of K is not equal to 2.
Lemma 1.8.1. Assume that the form is symmetric. Then there is an element x of V such
that 〈x, x〉 6= 0.

Proof: Suppose that 〈x, x〉 = 0 for all x in V . Since the form is symmetric we have
that 〈y + z, y + z〉 = 〈y, y〉 + 2〈y, z〉 + 〈z, z〉 for y, z in V . Since 2 is invertible, we can
rearrange this into 〈y, z〉 = (〈y+z, y+z〉−〈y, y〉−〈z, z〉)/2, which is zero by the assumption
that 〈x, x〉 = 0 for all x in V . However, this means that 〈 , 〉 is totally degenerate, which
contradicts the assumption made in the beginning of the section that the form should be
non-degenerate. Hence there must be an element x in V with 〈x, x〉 6= 0. ¤
Proposition 1.8.2. Assume that the form is symmetric. Then there is a basis for V with
respect to which the associated matrix (see Paragraph 1.7.8) is diagonal.

Moreover, this basis can be chosen so that it includes any given vector x with 〈x, x〉 6= 0.

Proof: Let x be a vector of V such that 〈x, x〉 6= 0. It follows from Lemma 1.8.1 that there
exists such an element x of V . Let e1 = x and let W = Ke1. Then W is a subspace of V .
Clearly we have that W ∩W⊥ = 0 and it follows from Lemma 1.7.5 that V = W ⊕W⊥.
Moreover, we have that the restriction of the bilinear form to W⊥ is non-degenerate. We
can therefore use induction on dimK V to conclude that there is a basis e2, . . . , en of W⊥

such that 〈ei, ej〉 = 0 and 〈ei, ei〉 6= 0, for i, j = 2, . . . n and i 6= j. By definition, we also
have that 〈e1, ei〉 = 0 for i = 2, . . . , n. Consequently, we have proved the proposition. ¤
Remark 1.8.3. Another way of phrasing the assertion of the proposition is that there is a
basis e1, . . . , en of V such that 〈ei, ei〉 = ci and 〈ei, ej〉 = 0, for i, j = 1, . . . n, and i 6= j
such that when we write x = (a1, . . . , an) and y = (b1, . . . , bn), with respect to this basis,
then we have that

〈x, y〉 = a1b1c1 + · · ·+ anbncn.

Definition 1.8.4. A basis with the properties of Proposition 1.8.2 is called an orthogonal
basis. When ci = 1, for i = 1, . . . , n, the basis is orthonormal. A linear map α : V → V
such that 〈α(x), α(y)〉 = 〈x, y〉, for all pairs x, y of V , is called orthogonal. The set of
all orthogonal linear maps is denoted by O(V, 〈 , 〉). The subset consisting of linear maps
with determinant 1 is denoted by SO(V, 〈 , 〉). As in section 1.1 we see that O(V, 〈 , 〉) is
a subgroup of Gl(V ), and that SO(V, 〈 , 〉) is a subgroup of Sl(V ). We call the groups
O(V, 〈 , 〉) and SO(V, 〈 , 〉) the orthogonal group, respectively the special orthogonal group of
〈 , 〉.
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Remark 1.8.5. When the field K contains square roots of all its elements we can, given
an orthogonal basis ei, replace ei with

√
ci
−1

ei. We then get an orthonormal basis. In
this case, we consequently have that all bilinear forms are equivalent to the form 〈x, y〉 =
a1b1 + · · · + anbn, where x =

∑n
i=1 aiei and y =

∑n
i=1 biei. This explains the choise of

terminology in sections 1.1 and 1.4.

Proposition 1.8.6. Assume that the form is alternating. We then have that n = 2m is
even and there is a basis e1, . . . , en for V , with respect to which the associated matrix (see
Paragraph 1.7.8) is of the form

S =

(
0 Jm

−Jm 0

)
,

where Jm be the matrix in Mm(K) with 1 on the antidiagonal, that is the elements aij with
i + j = m + 1 are 1, and the remaining coordinates 0.

Moreover the basis can be chosen so that it contains any given non-zero vector x.

Proof: If n = 1 there is no non-degenerate alternating form. So assume that n > 1. Let
e1 be an arbitrary non-zero vector. Since the form is non-degenerate there is a vector v
such that 〈e1, v〉 6= 0. Let en = 1

〈e1,v〉v. Then 〈e1, en〉 = 1. Let W = Ke1 + Ken be the
subspace of V spanned by e1 and en. Clearly we have that W ∩W⊥ = 0. It follows from
Lemma 1.7.5 that V = W ⊕ W⊥ and that the restriction of the bilinear form to W⊥ is
non-degenerate. We can now use induction to conclude that dimK W⊥ and thus dimK V
are even, and that there is a basis e2, . . . , en−1 such that 〈ei, en+1−i〉 = 1, for i = 2, . . . , m
and all other 〈ei, ej〉 = 0. However, 〈e1, ei〉 = 0 = 〈en, ei〉, for i = 2, . . . , n − 1. Thus we
have a basis e1, . . . , en as asserted in the proposition. ¤

Remark 1.8.7. The proposition asserts that there is a basis {e1, e2, . . . , en} such that
〈ei, en+1−i〉 = 1, for i = 1, . . . , m and all other 〈ei, ej〉 = 0. With respect to this basis,
we have that

〈x, y〉 =
m∑

i=1

(aibn+1−i − an+1−ibi).

It follows from the proposition that all non-degenerate alternating bilinear forms on a
vector space are equivalent.

Definition 1.8.8. A basis with the properties of Proposition 1.8.6 is called a symplectic
basis. A linear map α : V → V such that 〈α(x), α(y)〉 = 〈x, y〉, for all pairs x, y of V , is
called symplectic. The set of all symplectic linear maps is denoted by Sp(V, 〈 , 〉). As in 1.1
we see that Sp(V, 〈 , 〉) is a subgroup of Gl(V ), We call the group Sp(V, 〈 , 〉) the symplectic
group, of 〈 , 〉.

1.9 Generators of the orthogonal and symplectic groups
Let V be a vector space with a fixed non-degenerate bilinear form.
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Definition 1.9.1. Assume that 2 = 1 + 1 is non-zero in K and that 〈 , 〉 is symmetric. A
linear map α : V → V that fixes all the vectors in a subspace H of V of codimension 1,
that is dimK H = dimK V − 1, and is such that α(x) = −x for some non-zero vector x of
V , is called a reflection of V . Given an element x in V such that 〈x, x〉 6= 0. The map
sx : V → V defined by

sx(y) = y − 2
〈y, x〉
〈x, x〉x,

is clearly linear.

Remark 1.9.2. Let e1 = x and let {e1, e2, . . . , en} be an orthogonal basis with respect to
〈 , 〉. Then we have that sx(a1e1 + a2e2 + · · ·+ anen) = −a1e1 + a2e2 + · · ·+ anen, and the
matrix representing sx in this basis is given by

(−1 0
0 In−1

)
.

Thus the determinant of sx is −1.
The maps of the form sx are reflections. Indeed, let W = Kx. It follows from Lemma

1.7.4 that we have dimK W⊥ = n−1. For y ∈ W⊥ we have that sx(y) = y and we have that
sx(x) = −x. In particular s2

x is the identity map. Moreover, the maps sx are orthogonal
because

〈sx(y), sx(z)〉 =

〈
y − 2

〈y, x〉
〈x, x〉x, z − 2

〈z, x〉
〈x, x〉x

〉

= 〈y, z〉 − 2
〈y, x〉
〈x, x〉〈x, z〉 − 2

〈z, x〉
〈x, x〉〈y, x〉

+ 4
〈y, x〉〈z, x〉
〈x, x〉2 〈x, x〉 = 〈y, z〉.

(1.9.2.1)

Since det sx = −1, we have that sx ∈ O(V ) \ SO(V ).
There are also reflections that are not of the form sx for any x ∈ V (see Exercise 1.9.2).

Lemma 1.9.3. Let x and y be two elements of V such that 〈x, x〉 = 〈y, y〉 6= 0. Then there
is a linear map V → V , which takes x to y and which is a product of at most 2 reflections
of the form sz.

Proof: Assume that 〈x, y〉 6= 〈x, x〉 = 〈y, y〉. Then 〈x − y, x − y〉 = 2(〈x, x − y〉) =

2(〈x, x〉−〈x, y〉) 6= 0. Take z = x−y. Then 〈z, z〉 6= 0 and sz(x) = x−2 〈x,x−y〉
〈x−y,x−y〉(x−y) = y,

since 2 〈x,x−y〉
〈x−y,x−y〉 = 1.

On the other hand, if 〈x, y〉 = 〈x, x〉, we have that 〈−x, y〉 6= 〈x, x〉 since 2 is non-zero in
K and we see from the first part of the proof that we can take szsx, with z = −x− y. ¤

Proposition 1.9.4. The orthogonal group O(V ) is generated by the reflections of the form
sx with 〈x, x〉 6= 0, and the subgroup SO(V ) is generated by the products sxsy.
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Proof: It follows from Lemma 1.8.1 that there is an element x of V such that 〈x, x〉 6= 0.
Consequently, it follows from Lemma 1.7.5 that, if W = Kx, we have that V = W ⊕W⊥,
and that the bilinear form induces a non-degenerate bilinear form on W⊥.

Let α be an element of O(V ). Then 〈α(x), α(x)〉 = 〈x, x〉 6= 0. It follows from Lemma
1.9.3 that there is a product β of at most 2 reflections of the form sy such that β(x) = α(x).
Consequently β−1α induces a linear map β−1α|W⊥ of W⊥. We now use induction on dimK V
to write β−1α|W⊥ as a product of reflections of the form sz on W⊥ for z in W⊥. However,
the reflection sz considered as a reflection on W⊥ is the restriction of sz considered as a
reflection on V . Hence β−1α and thus α can be written as a product of reflections of the
form sz. We have proved the first part of the proposition. Since det sz = −1 we have that
such a product is in SO(V ) if and only if it contains an even number of factors. Hence the
second assertion of the proposition holds. ¤
Definition 1.9.5. Assume that the bilinear form 〈 , 〉 is alternating. Let x be a non-zero
vector in V and a an element of K. We define a map Ψ : V → V by Ψ(y) = y − a〈y, x〉x.
It is clear that Ψ is a linear map. The linear maps of this form are called transvections.

Remark 1.9.6. We have that each transvection is in Sp(V ). Indeed, by Proposition 1.8.6
we can choose a symplectic basis e1, . . . , en for the bilinear form with x = e1. Then we have
that Ψ(ei) = ei for i 6= n and Ψ(en) = en + ae1. Hence for y =

∑n
i=1 aiei we obtain that

〈Ψ(x), Ψ(y)〉 = 〈e1,
∑n

i=1 aiei + ae1〉 = 〈e1,
∑n

i=1 aiei〉 = 〈x, y〉. We also see that det Ψ = 1.

Lemma 1.9.7. Let 〈 , 〉 be a non-degenerate alternating form on V . Then for every pair
x, y of non-zero vectors of V there is a product of at most 2 transvections that sends x to
y.

Proof: For every pair x, y of elements of V such that 〈x, y〉 6= 0 the transvection associated
to the vector x− y and the element a defined by a〈x, y〉 = 1 will satisfy Ψ(x) = y. Indeed,
Ψ(x) = x + a〈x− y, x〉(x− y) = x− a〈x, y〉x + a〈x, y〉y = y.

Assume that x 6= y. By what we just saw it suffices to find an element z such that
〈x, z〉 6= 0 and 〈y, z〉 6= 0. We shall write Kx = 〈x〉 and Ky = 〈y〉. First we note that
since dimK〈x〉 + dimK〈x〉⊥ = dimK V by Lemma 1.7.4 we have that 〈x〉⊥ is not equal to
V . If 〈x〉⊥ = 〈y〉⊥ we can take z to be any element outside 〈x〉⊥. On the other hand if
〈x〉⊥ 6= 〈y〉⊥ we take u ∈ 〈x〉⊥ \ 〈y〉⊥ and u′ ∈ 〈y〉⊥ \ 〈x〉⊥, and let z = u + u′. ¤
Lemma 1.9.8. Let 〈 , 〉 be a non-degenerate alternating form on V and let x, y, x′, y′ be
vectors in V such that 〈x, y〉 = 1 and 〈x′, y′〉 = 1. Then there is a product of at most 4
transvections that sends x to x′ and y to y′.

Proof: By Lemma 1.9.7 we can find two transvections, whose product Φ sends x to x′.
Let Φ(y) = y′′. Then 1 = 〈x′, y′〉 = 〈x, y〉 = 〈x′, y′′〉. Consequently it suffices to find two
more transvections whose composition maps y′′ to y′ and that fix x′. If 〈y′, y′′〉 6= 0, we let
Ψ(z) = z + a〈y′′ − y′, z〉(y′′ − y′) with a = 〈y′, y′′〉. Then we have that Ψ(y′′) = y′, and
Ψ(x′) = x′, because 〈y′′ − y′, x′〉 = 1 − 1 = 0. On the other hand, when 〈y′, y′′〉 = 0, we
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have that 1 = 〈x′, y′′〉 = 〈x′, x′ + y′′〉 and 〈y′′, x′ + y′′〉 6= 0 6= 〈y′, x′ + y′′〉, so we can first
find a composition of two transvections that map the pair (x′, y′′) to (x′, x′ + y′′) and then
find a composition of two transvections that map the latter pair to (x′, y′). ¤
Proposition 1.9.9. The symplectic group Sp(V ) is generated by transvections.

In particular we have that the symplectic group is contained in Sl(V ).

Proof: Choose a basis e1, e
′
1, . . . , em, e′m of V such that 〈ei, e

′
i〉 = 1, for i = 1, . . . , m, and

all other products 〈ei, ej〉 of basis elements are 0. Let Φ be an element in the symplectic
group and write Φ(ei) = ēi and Φ(e′i) = ē′i. We have seen above that we can find a product
Ψ of transvections that maps the pair (e1, e

′
1) to (ē1, ē

′
1). Then Ψ−1Φ is the identity on the

space W = Ke1 + Ke′1. Thus Ψ−1Φ induces a linear map on W⊥, which is generated by
e2, e

′
2, . . . , em, e′m. Hence we can use induction on the dimension of V to conclude that Φ

can be written as a product of transvections.
The last part of the proposition follows from Remark 1.9.6. ¤

Exercises
1.9.1. Write the linear map V 2

C → V 2
C corresponding to the matrix

(
a b
−b a

)
, where a2 + b2 = 1, as

a product of reflections, with respect to the bilinear form corresponding to the matrix ( 1 0
0 1 ).

1.9.2. Let V be a finite dimensional vecor space with a symmetric bilinear form. Show that there
are reclections that are not of the form sx for any x in V .

1.9.3. Show that Sl2(K) = Sp2(K), and write all elements in these groups as products of transvec-
tions.

1.10 The center of the matrix groups
Definition 1.10.1. Let G be a group. The set Z(G) of elements of G that commute with
all elements of G, that is

Z(G) = {a ∈ G : ab = ba, for all b ∈ G}
is called the center of G.

It is clear that Z(G) is a normal subgroup of G and that isomorphic groups have iso-
morphic centers.

Proposition 1.10.2. The center of Gln(K) consists of all scalar matrices, that is all
matrices of the form aIn for some non-zero element a of K. The center of Sln(K) consists
of all matrices of the form aIn with an = 1.

Proof: It is clear that the matrices of the form aIn are in the center of Gln(K). Moreover,
we have that the center of Sln(K) is the intersection of the center of Gln(K) with Sln(K).
Indeed, every element A of Gln(K) is of the form (det A)(det A−1)A, where (det A−1)A is
in Sln(K). In particular, the last assertion of the proposition follows from the first.
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Let A in Gln(K) be in the center. Then A must commute with the elementary matrices
Eij(a). However, the equality AEij(1) = Eij(1)A implies that aij + ajj = aij + aii and that
aii = aii + aji. Consequently we have that aji = 0 and aii = ajj, when i 6= j, and we have
proved the proposition. ¤

We shall next determine the center of the orthogonal groups.

Lemma 1.10.3. Let V be a vector space of dimension at least 3 over a field K where
2 6= 0, and let 〈 , 〉 be a symmetric non-degenerate form. If Ψ is an element in O(V ) that
commutes with every element of SO(V ). Then Ψ commutes with every element of O(V ).

In particular we have that Z(SO(V )) = Z(O(V )) ∩ SO(V ).

Proof: Let x be a vector in V such that 〈x, x〉 6= 0. It follows from Proposition 1.8.2 that
we can find an orthogonal basis e1, . . . , en such that e1 = x.

Let W1 and W2 be the spaces generated by en, e1 and e1, e2 respectively. Since n ≥ 3,
we have that W1 and W2 are different, and we clearly have that W1 ∩W2 = Ke1 = Kx.
Denote by si the reflection sei

of Definition 1.9.1.
We have that Ψ(Wi) ⊆ Wi, for i = 1, 2. Indeed, write si = sei

for i = 1, 2. We
have that −Ψ(e1) = Ψ(s1s2(e1)) = s1s2(Ψ(e1)) = s1(Ψ(e1) − 2 〈Ψ(e1),e2〉

〈e2,e2〉 e2) = Ψ(e1) −
2 〈Ψ(e1),e1〉

〈e1,e1〉 e1 − 2 〈Ψ(e1),e2〉
〈e2,e2〉 e2. Consequently, Ψ(e1) = 〈Ψ(e1),e1〉

〈e1,e1〉 e1 − 〈Ψ(e1),e2〉
〈e2,e2〉 e2. Similarly it

follows that Ψ(e2) ∈ W2. A similar argument, with indices n, 1 instead of 1, 2 gives that
Ψ(W1) ⊆ W1. We obtain that Ψ(W1 ∩ W2) ⊆ W1 ∩ W2. Consequently we have that
Ψ(x) = ax, for some a ∈ K.

Since x was an arbitrary vector with 〈x, x〉 6= 0, we have that Ψ(y) = ayy, for some
element ay in K for all y in V such that 〈y, y〉 6= 0. In particular we have that Ψ(ei) = aiei,
for i = 1, . . . , n. It is now easy to check that Ψsx and sxΨ take the same value on all the
vectors e1, . . . , en, and hence Ψsx = sxΨ . It follows from Proposition 1.9.4 that Ψ commutes
with all the generators of O(V ), and consequently, with all the elements of O(V ). We have
proved the first part of the lemma. The second part follows immediately from the first. ¤

Proposition 1.10.4. Let V be a vector space over a field K with more than 3 elements,
where 2 6= 0, and let 〈 , 〉 be a symmetric non-degenerate form. Then we have that

(i) Z(O(V )) = {I,−I}
(ii) Z(SO(V )) = {I,−I} if dimK V > 2 and dimK V is even.
(iii) Z(SO(V )) = {I} if dimK V > 2 and dimK V is odd.

Proof: Let n = dimK V and let Φ be an element in the center of O(V ). It follows from
Proposition 1.9.4 that Φ commutes with all reflections of the form sx, where 〈x, x〉 6= 0.
For all y in V we have that

Φ(y)− 2
〈y, x〉
〈x, x〉Φ(x) = Φsx(y) = sxΦ(y) = Φ(y)− 2

〈Φ(y), x〉
〈x, x〉 x.
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Consequently, we have that 〈y, x〉Φ(x) = 〈Φ(y), x〉x. In particular we must have that
Φ(x) = axx, for some ax ∈ K. We get that a2

x〈x, x〉 = 〈axx, axx〉 = 〈Φ(x), Φ(x)〉 = 〈x, x〉.
Consequently, we have that ax = ±1.

It follows from Proposition 1.8.2 that we have an orthogonal basis e1, . . . , en for 〈 , 〉.
Then Φ(ei) = aiei, with ai = ±1. We shall show that all the ai’s are equal. To this end
we consider 〈ei + aej, ei + aej〉 = 〈ei, ei〉 + a2〈ej, ej〉, for all a ∈ K. Since K has more
than 3 elements we can find a non-zero element a of K such that 〈ei + aej, ei + aej〉 =
〈ei, ei〉 + a2〈ej, ej〉 6= 0. We then have that aiei + aajej = Φ(ei + aej) = b(ei + aej) for
some b ∈ K. Consequently, we have that ai = aj, for all i and j, and we have proved the
first part of the proposition. The assertions for SO(V ) follow from the first part of the
proposition and from Lemma 1.10.3. ¤
Proposition 1.10.5. The center of Sp(V ) is {I,−I}.

Proof: Let Φ be in the center of Sp(V ). It follows from proposition 1.9.9 that Φ commutes
with all transvections. Let Ψ be the transvection corresponding to x in V and a in K.
Then, for all y in V , we have that Φ(y)−a〈y, x〉Φ(x) = ΦΨ(y) = ΨΦ(y) = Φ(y)−〈Φ(y), x〉x.
Hence a〈x, y〉Φ(x) = 〈x, Φ(y)x〉. Choose y such that 〈x, y〉 6= 0. Then Φ(x) = axx for some
ax in K. Let z be another vector in V . We obtain, in the same way, that Φ(z) = azz and
Φ(x + z) = ax+z(x + z). Consequently we have that axx + azz = Φ(x + z) = ax+z(x + z).
Consequently, ax = az and there is an element a in K such that Φ(x) = ax for all x in V .
Choose y such that 〈y, x〉 6= 0. We have that a2〈x, y〉 = 〈ax, ay〉 = 〈Φ(x), Φ(y)〉 = 〈x, y〉,
so that a = ±1. Hence, we have proved the proposition. ¤
Example 1.10.6. We have proved the following assertions:

(i) Z(Gln(C)) ∼= C∗ = C \ 0, for all n.
(ii) Z(Sln(C)) ∼= Z/nZ, for all n (see Example 3.5.2).
(iii) Z(On(C)) ∼= {±1}, for all n.
(iv) Z(SOn(C)) ∼= {±1}, when n ≥ 4 is even.
(v) Z(SOn(C)) ∼= {1}, when n ≥ 3 is odd.
(vi) Z(Spn(C)) ∼= {±1}, for all even n.
Hence Sln(C), for n > 3, SOn(C), for n odd and Gln(C), are neither isomorphic as

groups, nor isomomorphic, as groups to any of the other groups. We can however, not rule
out isomorphisms between the remaining groups. The purpose of the next chapter is to
give all the groups a geometric structure, and to introduce invariants of this structure that
permits us to rule out isomorphisms.

Exercises
1.10.1. Let K = F3, i.e., the field with three elements {0, 1, 2} where 1+1 = 2 and 1+1+1 = 0.

(a) Show that if 〈 , 〉 is the form given by 〈(a1, b1), (a2, b2)〉 = a1a2−b1b2, we have that O(V 2
K, 〈 , 〉)

consists of 4 elements and is commutative.
(b) Show that if 〈 , 〉 is the form given by 〈(a1, b1), (a2, b2)〉 = a1a2+b1b2, we have that O(V 2

K, 〈 , 〉)
consists of 8 elements and is non-commutative.
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2 The exponential function and the geometry of matrix groups
In Chapter 1 we introduced classical groups over arbitrary fields and we defined algebraic

invariants of these matrix groups that made it possible to distinguish many of them. When
the groups have coefficients in the real or complex numbers we introduce here a geometric
structure on the groups, and define geometric invariants that make it possible to further
distinguish the matrix groups.

The geometric structure comes from a norm on all matrices with real or complex coeffi-
cients. This norm makes it possible to define and study analytic functions on the matrix
groups. In particular we can define curves in the matrix groups, and thus their tangent
spaces. The main tool used to introduce a geometric structure on the matrix groups in
this chapter is the exponential map. This functions induces an analytic map from the
tangent spaces of the classical groups introduced in Chapter 1 and the groups themselves.
It allows us to describe the tangent spaces as subspaces of all matrices, and we can define
and determine the dimension of the matrix groups introduced in Chapter 1 with real or
complex coefficients.

2.1 Norms and metrics on matrix groups
Throughout this chapter the field K will be the real or complex numbers, unless we

explicitly state otherwise.
All the matrix groups that we introduced in Chapter 1 were subsets of the n×n matrices

Mn(K). In this section we shall show how to give Mn(K) a geometric structure, as a metric
space. This structure is inherited by the matrix groups.

Definition 2.1.1. Let x = (a1, . . . , an) be a vector in V n
K. We define the norm ‖x‖ of x

by
‖x‖ = C max

i
|ai|,

where |a| is the usual norm of a in K and C is some fixed positive real number.

Remark 2.1.2. We have that V 1
K and K are canonically isomorphic as vector spaces. Under

this isomorphism the norm ‖ ‖ on V 1
K correspond to the norm | | on K.

Proposition 2.1.3. For all vectors x and y of Kn, and elements a of K, the following
three properties hold:

(i) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,
(ii) ‖ax‖ = |a|‖x‖,
(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof: The properties of the proposition hold for the norm || on K (see Remark 2.1.2).
Consequently, all the properties follow immediately from Definition 2.1.1 of a norm on
V n

K. ¤

Remark 2.1.4. We can consider Mn(K) as a vector space V n2

K of dimension n2, where
addition of vectors is the addition of matrices. In the definition of the norm on Mn(K) we
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shall choose C = n, and in all other cases we choose C = 1, unless the opposite is explicitly
stated.

Next we shall see how the norm behaves with respect to the product on Mn(K).

Proposition 2.1.5. Let X and Y be matrices in Mn(K). We have that

‖XY ‖ ≤ ‖X‖‖Y ‖.

Proof: Let X = (aij) and Y = (bij). Then we obtain that

‖XY ‖ = n max
ij

(|
n∑

k=1

aikbkj|) ≤ n max
ij

(
n∑

k=1

|aik||bkj|)

≤ nn max
ij

(|aik||bkj|) ≤ n2 max
ij
|aij|max

ij
|bij| = ‖X‖‖Y ‖.

¤
It is possible to give V n

K several different, but related, norms (see Exercise 2.1.3). Con-
sequently it is convenient to give a more general definition of a norm, valid for all vector
spaces.

Definition 2.1.6. Let V be a vector space. A norm on V is a function

‖ ‖ : V → R,

such that for all x and y of V and all a in K we have that
(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,
(ii) ‖ax‖ = |a|‖x‖,
(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

We call the the pair (V, ‖ ‖) a normed space.

Example 2.1.7. Choose a basis e = (e1, . . . , en) for the vector space V . We obtain a
canonical isomorphism

Ψe : V → V n
K

(see Paragraph 1.6.16). The norm ‖ ‖ on V n
K of Definition 2.1.1 induces a norm ‖ ‖e on V

by
‖x‖e = ‖Ψe(x)‖.

Choose another basis f = (f1, . . . , fn) of V . We get another norm ‖ ‖f of V , which is
closely related to ‖ ‖e. More precisely, there are two positive constants C1 and C2 such
that

C2‖x‖f ≤ ‖x‖e ≤ C1‖x‖f .
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Indeed, let fi =
∑n

j=1 aijej, for i = 1, . . . , n. For each vector x =
∑n

i=1 aifi of V we obtain
that

‖x‖e = ‖
n∑

i=1

aifi‖ = ‖
n∑

i=1

n∑
j=1

aiaijej‖e = max
j

(‖
n∑

i=1

aiaij‖)

≤ max
j

(
n∑

i=1

‖ai‖‖aij‖) ≤ n max
i

(‖ai‖) max
ij

(‖aij‖) = n‖x‖f max
ij

(‖aij‖).

We can choose C1 = n max(‖aij‖). Similarly, we find C2.

From a norm on a vector space we can define a distance function on the space.

Definition 2.1.8. Let (V, ‖ ‖) be a normed vector space. Define, for each pair of vectors
x and y of V , the distance d(x, y) between x and y to be

d(x, y) = ‖x− y‖.
Proposition 2.1.9. Let (V, ‖ ‖) be a normed vector space. For all vectors x, y and z of V
the following three properties hold for the distance function of Definition 2.1.8:

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, z) ≤ d(x, y) + d(y, z).

Proof: The properties (i) and (ii) follow immediately from properties (i) and (ii) of Defi-
nition 2.1.6. For property (iii) we use property (iii) of Definition 2.1.6 to obtain d(x, z) =
‖x− z‖ = ‖x− y + y − z‖ ≤ ‖x− y‖+ ‖y − z‖ = d(x, y) + d(y, z). ¤

Sets with a distance function enjoying the properties of the proposition appear every-
where in mathematics. It is therefore advantageous to axiomatize their properties.

Definition 2.1.10. Let X be a set. A metric on X is a function
d : X ×X → R

such that, for any triple x, y, z of points of X, we have
(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a metric space

Remark 2.1.11. For every subset Y of a metric space (X, dX), we have a distance function
dY on Y defined by dY (x, y) = dX(x, y), for all x and y in Y . It is clear that Y , with this
distance function, is a metric space. We say that (Y, dY ) is a metric subspace of (X, dX).

Definition 2.1.12. Let r be a positive real number and x a point in X. A ball B(x, r), of
radius r with center x, is the set

{y ∈ X : d(x, y) < r}.



Norms and metrics on matrix groups 35

We say that a subset U of X is open if, for every point x in U , there is a positive real
number r such that the ball B(x, r) is contained in U (see Exercise 2.1.4). A subset Y of
X is closed if its complement X \Y is open. Let x be a point of X, we call an open subset
of X that contains x a neighborhood of x.
Remark 2.1.13. We have that every ball B(x, r) is open. Indeed, let y be in B(x, r). Put
s = r − d(x, y). Then the ball B(y, s) is contained in B(x, r), because, for z ∈ B(y, s) we
have that d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + s = r.

The metric on V n
K is defined by d((a1, . . . , an), (b1, . . . , bn)) = maxi |ai− bi|. Hence a ball

B(x, r) with center x and radius r is, in this case, geometrically a cube centered at x and
with side length 2r. We see that, if a subset U of V n

K is open with respect to the norm given
by one constant C, then it is open with respect to the norm defined by all other positive
constants. Consequently metrics on a vector space that are associated to the norms on a
vector space given by different choices of bases, as in Example 2.1.7, also give the same
open sets.

The definition of a continuous map from calculus carries immediately over to metric
spaces.
Definition 2.1.14. A map Φ : X → Y , from a metric space (X, dX) to a metric space
(Y, dY ), is continuous if, for each point x of X and any positive real number ε, there is a
positive real number δ, such that the image of B(x, δ) by Φ is contained in B(Φ(x), ε). A
continuous map between metric spaces that is bijective and whose inverse is also continuous
is called a homeomorphism of the metric spaces.

We next give a very convenient criterion for a map to be continuous. The criterion easily
lends itself to generalizations (see Section 3.3).
Proposition 2.1.15. Let Φ : X → Y be a map between metric spaces (X, dX) and (Y, dY ).
We have that Φ is continuous if and only if, for every open subset V of Y , the inverse
image Φ−1(V ) is open in X.

Proof: Assume first that Φ is continuous. Let V be open in Y . We shall show that
U = Φ−1(V ) is open in X. Choose x in U . Since V is open, we can find a positive
number ε such that B(Φ(x), ε) is in V , and since Φ is continuous, we can find a positive
integer δ such that Φ(B(x, δ)) ⊆ B(Φ(x), ε). That is, the ball B(x, δ) is contained in U .
Consequently, every x in U is contained in a ball in U . Hence U is open.

Conversely, assume that the inverse image by Φ of every open subset of Y is open in
X. Let x be in X and let ε be a positive real number. Then B(Φ(x), ε) is open in Y .
Consequently, the set U = Φ−1(B(Φ(x), ε) is open in X, and U clearly contains x. We can
therefore find a positive real number δ such that B(x, δ) is contained in U . Consequently,
we have that Φ(B(x, δ)) ⊆ Φ(U) = B(Φ(x), ε). That is, Φ is continuous. ¤
Remark 2.1.16. Many properties of continuous maps follow directly from Proposition 2.1.15.
For example, it is clear that the composite ΨΦ of two continuous maps Φ : X → Y and
Ψ : Y → Z of metric spaces is continuous.
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Example 2.1.17. The map
det : Mn(K) → K

is given by the polynomial

det(xij) =
∑

σ∈Sn

sign(σ)x1σ(1) · · ·xnσ(n),

of degree n in the variables xij, where i, j = 1, . . . , n. The symbol sign σ is 1 or −1
according to whether σ is an even or odd permutation (see Example 1.2.13). In particular
the determinant is a continuous map (see Exercise 2.1.5). For each matrix A in Gln(K) we
have that det A 6= 0. Let ε = | det A|. Then there is a positive real number δ such that the
ball B(A, δ) in V n2

K maps into the ball B(det A, ε) in K. The latter ball does not contain
0. In other words we can find a ball around A that is contained in Gln(K). Hence Gln(K)
is an open subset of the space Mn(K).

Example 2.1.18. We have that the determinant induces a continuous map
det : On(K) → {±1}.

The inverse image of 1 by this map is SOn(K). Since the point 1 is open in {±1} we have
that SOn(K) is an open subset of On(K).

Exercises
2.1.1. Let X be a set. Define a function

d : X ×X → R

by d(x, y) = 1 if x 6= y and d(x, x) = 0. Show that (X.d) is a metric space, and describe the open
sets of X.

2.1.2. Let (X1, d1), . . . , (Xm, dm) be metric spaces.
(a) Show that the Cartesian product X = X1 × · · · ×Xm with the function d : X ×X → R

defined by

d((x1, . . . , xm), (y1, . . . , ym)) = d1(x1, y1) + · · ·+ dm(xm, ym),

is a metric space.
(b) When X1 = · · · = Xm and di, for i = 1, . . . ,m is the metric of Problem 2.1.2, the metric is

called the Hamming metric on X. Show that d((x1, . . . , xm), (y1, . . . , ym)) is the number
of indices i such that xi 6= yi.

(c) When X1 = · · · = Xm = K, where K is the real or complex numbers, we have that
X = V m

K , and we call the metric, the taxi metric. Show that the open sets for the taxi
metric are the same as the open sets in the metric on V m

K associated to the norm on V m
K

given in Definition 2.1.8 and Remark 2.1.2.

2.1.3. Let X = Kn and, for x in X let

‖x‖ =
√
|x1|2 + · · ·+ |xn|2.

Show that this defines a norm on X.
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Hint: Consider the sesquilinear product

〈, 〉 : Cn ×Cn → C,

defined by
〈x, y〉 = x1ȳ1 + · · ·+ xnȳn,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) and ȳi is the complex conjugate of yi.
For all points x, y and z of Cn we have that
(a) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
(b) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
(c) a〈x, y〉 = 〈ax, y〉 = 〈x, āy〉
(d) 〈x, y〉 = 〈y, x〉.

Then ‖x‖ =
√
〈x, x〉 and we have Schwartz inequality,

‖〈x, y〉‖ ≤ ‖x‖‖y‖,
with equality if and only if x = ay for some a ∈ K.

In order to prove the Schwartz inequality we square the expression and prove that 〈x, y〉2 ≤
‖x‖2‖y‖2. If ‖y‖2 = 0, the inequality clearly holds, so you can assume that ‖y‖2 > 0. We have
that

n∑

j=1

∣∣‖y‖2xj − 〈x, y〉yj

∣∣2 =
n∑

j=1

(‖y‖2xj − 〈x, y〉yj)(‖y‖2x̄j − 〈x, y〉yj)

= ‖y‖4‖x‖2 − ‖y‖2〈x, y〉
n∑

j=1

xj ȳj − ‖y‖2
n∑

j=1

x̄jyj + ‖〈x, y〉‖2‖y‖2

= ‖y‖4‖x‖2 − ‖y‖2‖〈x, y〉‖2 − ‖y‖2‖〈x, y〉‖2 + ‖y‖2‖〈x, y〉‖2

= ‖y‖2(‖y‖2‖x‖2 − ‖〈x, y〉‖2).

Since the first term is nonnegative and ‖y‖2 > 0, you obtain the inequality ‖〈x, y〉‖2 ≤ ‖x‖2‖y‖2.
The first term is zero if and only if x = 〈x,y〉

‖y‖2 , hence equality holds if and only if x = ay for some
a.

2.1.4. Let (X, d) be a metric space. Show that the collection U = {Ui}i∈I of open sets satisfies
the following three properties:

(a) The empty set and X are in U .
(b) If {Uj}j∈J is a collection of sets from U , then the union ∪j∈JUj is a set in U .
(c) If {Uj}j∈K is a finite collection of sets from U , then the intersection ∩j∈KUj is a set in U .

2.1.5. Show that if f and g are continuous functions Kn → K, then cg, f + g, and fg are
continuous for each c in K. Consequently, all polynomial functions are continuous.

2.1.6. Let f be a non-constant polynomial function f : Kn → K.
(a) Show that the points where f is zero can not contain a ball B(a, ε), with a ∈ Kn and

ε > 0.
(b) Show that if f(a) 6= 0, then there is a ball B(aε) such that f(x) 6= 0 for all x in B(a, ε).

Hint: Solve the problem for n = 1 and use induction on n.

2.1.7. Let [a, b] be a closed interval of the real line, where a or b can be equal to ∞.
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(a) Show that the only subsets of [a, b] that are both open and closed are [a, b] and the empty
set ∅.

(b) Show that the only subsets of a ball B(x, r) in Rn that are both open and closed are
B(x, r) and ∅.

2.2 The exponential map
In Section 2.1 we introduced a norm on the space Mn(K) which satisfies the inequality

of Proposition 2.1.5. To this norm we saw in Definition 2.1.8 that we can associate a metric
on Mn(K). In this section we shall show how this metric allows us to define an exponential
and a logarithmic function on Mn(K). We also show that many of the usual properties of
exponential and logarithmic functions hold.

The fundamental notions of calculus carry over to any metric space virtually without
any change. Therefore we leave some of the verification to the reader as exercises.

Definition 2.2.1. Let (X, d) be a metric space. A sequence x1, x2, . . . of elements in X
converges to an element x of X if, for every positive real number ε, there is an integer m
such that d(x, xi) < ε, when i > m.

A sequence x1, x2, . . . is a Cauchy sequence if, for every positive real number ε, there is
an integer m such that d(xi, xj) < ε, when i, j > m.

The space X is complete if every Cauchy sequence in X converges.
When X is a vector space and the metric comes from a norm, we say that the series

x1 + x2 + · · · converges if the sequence {yn = x1 + · · ·+ xn}n=1,2,... converges.

As in calculus, we have that every convergent sequence in a metric space is a Cauchy
sequence (see Exercise 2.2.2).

Proposition 2.2.2. The space V n
K, with the norm of Definition 2.1.1, is complete.

Proof: Let xi = (ai1, . . . , ain) be a Cauchy sequence in V n
K. Given ε there is an integer m

such that ‖xi − xj‖ = maxk |aik − ajk| < ε, when i, j > m. Consequently, the sequences
a1k, a2k, . . . are Cauchy in K, for k = 1, . . . , n. Since the real and complex numbers are
complete we have that these sequences converge to elements a1, . . . , an. It is clear that
x1, x2, . . . converges to x = (a1, . . . , an). ¤
2.2.3. For X in Mn(K) and m = 0, 1, . . . , let expm(X) be the matrix

expm(X) = In +
1

1!
X +

1

2!
X2 + · · ·+ 1

m!
Xm.

The sequence {expm(X)}m=0,1,... is a Cauchy sequence in Mn(K) because, for q > p, we
have that

‖ expq(X)− expp(X)‖ = ‖ 1

(p + 1)!
Xp+1 + · · ·+ 1

q!
Xq‖

≤ 1

(p + 1)!
‖Xp+1‖+ · · ·+ 1

q!
‖Xq‖ ≤ 1

(p + 1)!
‖X‖p+1 + · · ·+ 1

q!
‖X‖q,
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and the term to the right can be made arbitrary small by choosing p big because the
sequence {1 + 1

1!
‖X‖+ · · ·+ 1

m!
‖X‖m}m=0,1,... converges to exp(‖X‖), where exp(x) is the

usual exponential function on K.

Definition 2.2.4. For X in Mn(K) we define exp(X) to be the limit of the sequence
exp0(X), exp1(X), . . . .

Example 2.2.5. Let X = ( 0 1
−1 0 ). Then we have that X2 = −I2, X3 = −X, X4 = I2, . . . .

We see that exp(yX) = I2 + 1
1!
yX + 1

2!
y2I2 − 1

3!
y3X + 1

4!
y4I2 + . . . . Consequently, we have

that exp(yX) =
(

cos y sin y
− sin y cos y

)
. Let Φ : C → M2(R) be the map given by Φ(x + iy) = (

x y
−y x )

(see Example 1.3.12). Then we have that Φ(exp(iy)) = exp(Φ(iy)). In the last formula
the exponential function on the left is the usual exponential function for complex numbers
and the one to the right the exponential function for matrices.

Remark 2.2.6. The exponential function defines a continuous map exp: Mn(K) → Mn(K).
Indeed, we have seen that ‖ expm(X)‖ ≤ exp(‖X‖). Let B(Z, r) be a ball in Mn(K), and
choose Y in Mn(K) such that ‖Z‖ + r ≤ ‖Y ‖. Then, for any X in B(Z, r), we have that
‖X‖ ≤ ‖X − Z‖ + ‖Z‖ ≤ r + ‖Z‖ ≤ ‖Y ‖. Consequently, we have that ‖ expm(X)‖ ≤
exp(‖X‖) ≤ exp(‖Y ‖), for all X in B(Z, r). It follows that the series exp0(X), exp1(X), . . . ,
converges uniformly on B(Z, r) (see Exercise 2.2.3 (iii)). The functions expm : Mn(K) →
Mn(K) are given by polynomials, hence they are continuous. Since they converge uniformly
their limit exp is therefore continuous on B(Z, r) (see Exercise 2.2.3). Consequently, exp
is continuous everywhere. In Section 2.4 we shall show that the exponential function is
analytic. Hence, in particular, it is differentiable with an analytic derivative.

Example 2.2.7. Let X = ( 0 1
−1 0 ). Then X2 = I2, X3 = −X, X4 = I2, . . . . We obtain,

for each t in K that exp tX = I2 + 1
1!
tX − 1

2!
t2I2 − 1

3!
t3X + · · · . Consequently, we have

that exp tX = ( cos t sin t
− sin t cos t ). We see that we get a homomorphism of groups K → SO2(K),

which gives an one to one correspondence between a neighborhood of I2 in SO2(K) and a
small neighborhood of 0 in K.

The exponential map in Mn(K) has the usual properties of the exponential function in
K.

Proposition 2.2.8. For all matrices X and Y of Mn(K) the following properties hold for
the exponential function:

(i) exp(0) = In,
(ii) exp(X + Y ) = exp(X) exp(Y ), if XY = Y X,
(iii) exp(−X) exp(X) = In. Consequently exp(X) is in Gln(K).
(iv) exp(tX) = t(exp(X)),
(v) exp(Y −1XY ) = Y −1 exp(X)Y , for all invertible matrices Y .

(vi) If X =

( a1 ··· 0
... ... ...
0 ··· an

)
is diagonal, then exp(X) =

(
exp(a1) ··· 0

... ... ...
0 ··· exp(an)

)
.
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Proof: Assertion (i) is obvious. To prove assertion (ii) we observe that, if XY = Y X, then
(X + Y )i =

∑i
j=0

(
i
j

)
XjY i−j. We obtain that

expm(X + Y ) = In + (X + Y ) + · · ·+
m∑

i=0

1

i!(m− i)!
X iY m−i.

On the other hand, we have that

expm(X) expm(Y ) = (In +
1

1!
X + · · ·+ 1

m!
Xm)(In +

1

1!
Y + · · ·+ 1

m!
Y m)

= In +
1

1!
(X + Y ) + · · ·+ 1

m!
Xm +

1

(m− 1)!
Xm−1Y + · · ·+ 1

m!
Y m +

1

m!
gm(X, Y ),

where gm(X, Y ) consists of sums of products of the form 1
(p−j)!j!

XjY p−j with 2m ≥ p >

m. Consequently ‖gm(X,Y )‖ ≤ ‖ exp2m(X + Y ) − expm(X + Y )‖. Since the sequence
{expm(X +Y )}m=0,1,... converges to exp(X +Y ), we have that {gm(X, Y )}m=0,1,... converges
to zero, and we have proved assertion (ii).

Assertion (iii) follows from assertion (i) and assertion (ii) with Y = −X. We have that
assertion (iv) follows from the formulas t(Xm) = (tX)m, for m = 1, 2, . . . , and assertion
(v) from the formulas (Y −1XY )m = Y −1XmY and Y −1XY + Y −1ZY = Y −1(X + Z)Y .

Assertion (vi) follows from the definition of the exponential function. ¤

Example 2.2.9. Although the exponential function for matrices has features similar to
those of the usual exponential function, and, in fact, generalizes the latter, it can look
quite different. For example, we have that

exp
(

0 x y
0 0 z
0 0 0

)
=

(
1 x y+ 1

2
xz

0 1 z
0 0 1

)
.

For upper triangular matrices with zeroes on the diagonal the exponential function exp(X)
is, indeed, always a polynomial in X (see Exercise 2.2.4).

By direct calculation it is easy to check that, if X = ( 1 1
0 0 ) and Y = ( −1 1

0 0 ), then
exp(X) = ( e e−1

0 1 ), and exp(Y ) =
(

e−1 1−e−1

0 1

)
. We have that XY 6= Y X and exp(X +Y ) =

( 1 2
0 1 ), whereas exp(X) exp(Y ) =

(
1 2(e−1)
0 1

)
.

2.2.10. For A in Mn(K), and m = 1, 2, . . . , let logm(A) be the matrix

logm(A) = (A− In)− 1

2
(A− In)2 + · · ·+ (−1)m−1 1

m
(A− In)m.

Assume that ‖A− I‖ < 1. Then the sequence log1(A), log2(A), . . . is a Cauchy sequence.
Indeed, we have that for q > p

‖ logq(A)− logp(A)‖ = ‖(−1)p 1

p + 1
(A− In)p+1 + · · ·+ (−1)q 1

q
(A− In)q‖

≤ 1

p + 1
‖A− In‖p+1 + · · ·+ 1

q
‖(A− In)‖q,
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and the term to the right can be made arbitrary small by choosing p big because the
sequence {‖A−In‖+ 1

2
‖A−In‖2 + · · ·+ 1

m
‖A−In‖m}m=1,2,... converges, when ‖A−In‖ < 1.

Definition 2.2.11. Let A be a matrix in Mn(K). We define log(A) to be the limit of the
sequence log1(A), log2(A), . . . , when the sequence converges in Mn(K).

Proposition 2.2.12. For all matrices A and B in Mn(K) the following properties hold
for the logarithmic function:

(i) log(In) = 0,
(ii) log(tA) = t(log(A)),
(iii) We have that log(A) is defined if and only if log(B−1AB) is defined, where B is

invertible, and we have that log(B−1AB) = B−1 log(A)B.

(iv) If A =

( a1 ... 0
... ... ...
0 ... an

)
is diagonal, then log(A) =

(
log(a1) ... 0

... ... ...
0 ... log(an)

)
.

(v) log(A) log(B) = log(B) log(A), when AB = BA, and log(A), log(B) and log(AB)
are defined.

Proof: All the assertions are easily proved by methods similar to those used in the proof
of Proposition 2.2.8. For the last assertion we note that when AB = BA the partial sums
logm(A) logm(B) and logm(B) logm(A) are actually equal. ¤
Remark 2.2.13. The logarithm defines a continuous map log : B(In, 1) → Mn(K). This
follows from the inequality ‖ 1

m
Xm‖ ≤ 1

m
‖X‖m, since the sequence log(1 − x) = −(x +

1
2
x2 + · · · ) converges for |x| < 1 (see Exercise 2.2.3). In Section 2.4 we shall show that the

logarithmic function is analytic. Hence, in particular, it is differentiable with an analytic
derivative.

Exercises
2.2.1. Determine the matrices exp ( 1 1

0 1 ), exp ( 1 1
4 1 ), and exp

(
1 1−1 3

)
.

2.2.2. Show that in a metric space every convergent sequence is a Cauchy sequence.

2.2.3. Let X be a set, S a subset, and (Y, dY ) a metric space. A sequence f0, f1, . . . of functions
fm : S → Y converges uniformly to a function f : S → Y if, for every positive real number ε there
is an integer m such that dY (f(x), fp(x)) < ε, for p > m and all x ∈ S. A sequence f0, f1, . . .
satisfies the Cauchy criterion if, for every positive real number ε, there is an integer m such that
dY (fp(x), fq(x)) < ε, for p, q > m, and all x in S.

(a) Show that a sequence f0, f1, . . . of functions fm : S → Y that converges to a function
f : S → Y , satisfy the Cauchy criterion.

(b) Assume that (Y, dY ) is complete. Show that a sequence f0, f1, . . . of functions fm : S → Y
that satisfies the Cauchy criterion converges to a function f : S → Y .

(c) Let f0, f1, . . . be a sequence of functions fm : S → Y such that ‖fm(x)‖ ≤ am, for m =
0, 1, . . . , where

∑∞
m=0 am is a convergent sequence. Show that the sequence {sm(x) =

f0(x) + · · ·+ fm(x)}m=0,1,... converges uniformly.
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(d) Let (X, dX) be a metric space and let f0, f1, . . . be a sequence of continuous functions
fm : X → Y . If the sequence converges uniformly to a function f : X → Y , then f is
continuous.

2.2.4. Let X be an upper triangular matrix with zeroes on the diagonal. Show that the equality
exp(X) = In + 1

1!X + · · ·+ 1
(n−1)!X

n−1 holds.

2.2.5. Let V be a finite dimensional vector space over K. Moreover let 〈 , 〉 be a non degenerate
bilinear form on V .

(a) Show that the exponential map is well defined from HomK(V, V ) to Gl(V ).
(b) Assume that 〈 , 〉 is symmetric, and let x in V be a vector with 〈x, x〉 6= 0. Determine

exp(sx).
(c) Assume that 〈 , 〉 is alternating. Determine exp(Φ), where Φ is the transvection given by

Φ(y) = y − a〈y, x〉x.

2.3 Diagonalization of matrices and the exponential and logarithmic
functions

Most of the properties of the usual exponential and logarithmic functions hold for the
more general functions on matrices. These properties can be proved by similar, but more
complicated, methods to those used in calculus courses. The formal manipulations of series
can however be quite complicated. Instead of mimicing the techniques from elementary
calculus we choose to deduce the properties of the exponential and logarithmic functions for
matrices from those of calculus by geometric methods. The idea is that such deductions are
immediate for diagonalizable matrices and that, since the functions are continuous, there
are sufficiently many diagonalizable matrices for the properties to hold for all matrices.
From properties (v) and (vi) of Proposition 2.2.8 and properties (iii) and (iv) of Proposition
2.2.12 it follows that the properties of the usual exponential and logarithmic functions are
inherited by the exponential and logarithmic functions on the diagonalizable matrices.
Then we use that the exponential and logarithmic functions are continuous and that there
are diagonalizable matrices sufficiently near all matrices, to deduce the desired properties
for all matrices.
Definition 2.3.1. A subset S of a metric space (X, d) is dense, if every ball B(x, ε) in
X contains an element in S. Equivalently, S is dense if every nonempty open set in X
contains an element of S.
Lemma 2.3.2. Let (X, dX) and (Y, dY ) be metric spaces, and T a dense subset of X.
Moreover, let f and g be continuous functions from X to Y . If f(x) = g(x) for all x in T ,
then f(x) = g(x), for all x in X.

Proof: Assume that the lemma does not hold. Then there is a point x in X such that
f(x) 6= g(x). Let ε = dY (f(x), g(x)). The balls B1 = B(f(x), ε

2
) and B2 = B(g(x), ε

2
) do

not intersect, and the sets U1 = f−1(B1) and U2 = g−1(B2) are open in X and contain x.
Since T is dense we have a point y in T contained in U1∩U2. We have that z = f(y) = g(y)
and consequently, z is contained in both B1 and B2. This is impossible since B1 and B2
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are disjoint. Consequently there is no point x such that f(x) 6= g(x), and we have proved
the lemma. ¤

Definition 2.3.3. We say that a matrix X in Mn(K) is diagonalizable if there is an
invertible matrix B such that B−1XB is diagonal.

Proposition 2.3.4. Let X be a matrix in Mn(C). Then there exists a matrix Y , complex
numbers di and ei, for i = 1, . . . , n, with the ei all different, and a real positive number ε
such that, for all nonzero t ∈ C with |t| < ε, we have that X + tY is diagonalizable and
with diagonal matrix whose (i, i)’th coordinate is di + tei, for i = 1, . . . , n.

Proof: The proposition clearly holds when n = 1. We shall proceed by induction on n.
Assume that the proposition holds for n− 1. Choose an eigenvalue d1 of X and a nonzero
eigenvector x1 for d1. That is, we have Xx1 = d1x1. It follows from Theorem 1.6.9 that we
can choose a basis x1, . . . , xn of V n

K. With respect to this basis the matrix X takes the form
X =

(
d1 a
0 X1

)
, where a = (a12, . . . , a1n) and where X1 is an (n−1)× (n−1) matrix. By the

induction hypothesis there is a matrix Y1, elements di and ei of C, for i = 2, . . . , n, where
the ei are all different, and an ε1 such that, for all nonzero |t| < ε1 there is an invertible
matrix C1(t) such that X1 + tY1 = C1(t)D1(t)C1(t)

−1, where D1(t) is the (n− 1)× (n− 1)
diagonal matrix with (i− 1, i− 1)’th entry di + tei for i = 2, . . . , n. The equality can also
be written

(X1 + tY1)C1(t) = C1(t)D1(t). (2.3.4.1)
Let

X =
(

d1 a
0 X1

)
, Y =

(
e1 0
0 Y1

)
, C(t) =

(
1 c(t)
0 C1(t)

)
, D(t) =

(
d1+te1 0

0 D1(t)

)
,

where c(t) = (c12(t), . . . , c1n(t)), for some elements c1i(t) of C. Note that det C(t) =
det C1(t) for all t 6= 0 such that |t| < ε1, so that the matrix C(t) is invertible for any choice
of the elements c1i(t) of C. Let X(t) = X + tY . We shall determine the numbers c1i(t)
and e1 such that the equation

X(t)C(t) = C(t)D(t), (2.3.4.2)

holds. We have that

X(t)C(t) =
(

d1+te1 a
0 X1+tY1

) (
1 c(t)
0 C1(t)

)
=

(
d1+te1 (d1+te1)c(t)+a′(t)

0 (X1+tY1)C1(t)

)
,

where cij(t) for i = 2, . . . , n and j = 1, . . . , n are the coordinates of C1(t) and where
a′(t) = (

∑n
i=2 a1ici2(t), . . . ,

∑n
i=2 a1icin(t)). On the other hand we have that

C(t)D(t) =
(

1 c(t)
0 C1(t)

)(
d1+te1 0

0 D1(t)

)
=

(
d1+te1 c′(t)

0 C1(t)D1(t)

)
,

where c′(t) = ((d2 + te2)c12(t), . . . , (dn + ten)c1n(t)). Since the Equation 2.3.4.1 holds the
Equality 2.3.4.2 holds exactly when

(d1 + te1)c1i(t) + a12c2i(t) + · · ·+ a1ncni(t) = (di + tei)c1i(t), (2.3.4.3)
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for i = 2, . . . , n. Choose e1 different from all the e2, . . . , en. Then each equation d1 + te1 =
di + tei has exactly one solution t = −(di−d1)/(ei− e1), and we can choose an ε < ε1 such
that for a nonzero t with |t| < ε we have that (di − d1) + t(ei − e1) 6= 0. Then

c1i(t) =
1

(di − d1) + t(ei − e1)
(a12c2i(t) + · · ·+ a1ncni(t)), for i = 2, . . . n

solve the equations 2.3.4.3, and we have proved the proposition. ¤
Corollary 2.3.5. The subset of Mn(C) consisting of diagonalizable matrices is dense in
Mn(C).

Proof: Let X be a matrix of Mn(C). If follows from the proposition that we can find
diagonalizable matrices X + tY for sufficiently small nonzero t. We have that ‖X + tY −
X‖ = |t|‖Y ‖. Consequently we can find diagonalizable matrices in every ball with center
X. ¤
Theorem 2.3.6. Let U be the ball B(In, 1) in Gln(K) and let V = log(U). The following
five properties hold:

(i) log exp X = X, for all X ∈ Mn(K) such that log exp X is defined.
(ii) exp log A = A, for all A ∈ Gln(K) such that log A is defined.
(iii) det exp X = exp tr X, for all X ∈ Mn(K), where tr(aij) =

∑n
i=1 aii.

(iv) The exponential map exp: Mn(K) → Gln(K) induces a homeomorphism V → U .
The inverse map is log |U .

(v) log(AB) = log A + log B, for all matrices A and B in U such that AB ∈ U , and
such that AB = BA.

Proof: Since the functions exp and log map real matrices to real matrices it suffices to
prove the theorem when K = C.

To prove assertion (i) we first note that by Remarks 2.2.6 and 2.2.13 we have that
log exp X and X are continuous maps from V to Mn(C). It follows from Proposition
2.3.4 that the diagonalizable matrices are dense in V . Consequently, it follows from
Lemma 2.3.2 that it suffices to prove the assertion when X is a diagonalizable matrix.
From Proposition 2.2.8 (v) and Proposition 2.2.12 (iii) it follows that Y −1(log exp X)Y =
log(Y −1(exp X)Y ) = log exp(Y −1XY ). Consequently it suffices to prove assertion (i) for
diagonal matrices. It follows from 2.2.8 (vi) and 2.2.12 (iv) that

log exp

( a1 ··· 0
... ... ...
0 ··· an

)
= log

( exp a1 ··· 0

... ... ...
0 ··· exp an

)
=

(
log exp a1 ··· 0

... ... ...
0 ··· log exp an

)
=

( a1 ··· 0
... ... ...
0 ··· an

)
.

Hence we have proved the first assertion.
To prove assertion (ii) we use that exp log A and A are continuous functions from U to

Mn(C). Reasoning as in the proof of assertion (i) we see that it suffices to prove assertion
(ii) for diagonal matrices. The verification of the assertion for diagonal matrices is similar
to the one we used in the proof for diagonal matrices in assertion (i).
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To prove assertion (iii) we use that det exp X and exp tr X are continuous functions from
Mn(C) to Mn(C). We have that det(Y −1XY ) = det X and tr(Y −1XY ) = tr X, for all
invertible Y (see Exercise 2.3.1). It follows, as in the proofs of assertions (i) and (ii) that
it suffices to prove assertion (iii) for diagonal matrices. However,

det exp

( a1 ··· 0
... ... ...
0 ··· an

)
= det

( exp a1 ··· 0

... ... ...
0 ··· exp an

)
= exp(a1) · · · exp(an),

and
exp tr

( a1 ··· 0
... ... ...
0 ··· an

)
= exp(a1 + · · ·+ an) = exp(a1) · · · exp(an).

Hence we have proved assertion (iii).
Assertion (iv) follows from assertions (i) and (ii) since exp and log are continuous.
Finally, to prove assertion (v), we let A and B be elements in in U , such that AB is in

U . It follows from assertion (iv) that we can find X and Y in Mn(K) such that A = exp X,
and B = exp Y . Consequently it follows from assertion (iv) that X = log A and Y =
log B. From Proposition 2.2.12 (v) it follows that XY = log A log B = log B log A = Y X.
Consequently it follows from Proposition 2.2.8 (ii) that exp(X + Y ) = exp(X) exp(Y ).
Hence it follows from assertion (i) that log(AB) = log(exp X exp Y ) = log(exp(X + Y )) =
X + Y = log A + log B, and we have proved assertion (v). ¤

Part (iv) of Theorem 2.3.6 is a particular case of a much more general result that we
shall prove in Chapter 3. We shall next show that a similar assertion to Theorem 2.3.6
(iv) holds for the matrix groups Gln(K), Sln(K), and GS(K), when S is invertible. First
we shall introduce the relevant subspaces of Mn(K).

Definition 2.3.7. Let gln(K) = Mn(K). We let
sln(K) = {X ∈ gln(K)| tr X = 0},

where as usual the trace tr X of a matrix X = (aij) is defined by tr X =
∑n

i=1 aii.
Let S be a matrix in Mn(K). We let

gS(K) = {X ∈ gln(K)|tXS + SX = 0}.
In the special cases when S = In, or S is the matrix of Display 1.4.1.1 we denote gS(K)
by son(K) respectively spn(K).

Remark 2.3.8. All the sets sln(K) and gS(K) are subspaces of gln(K). In particular they
are metric spaces with the metric induced by the metric on gln(K). We also note that
son(K) is a subspace of sln(K) because tr tX = tr X, so that 2 tr X = 0, and we always
assume that 2 is invertible in K when we treat the orthogonal groups.

Proposition 2.3.9. Assume that S is invertible. We have that the exponential map
exp: Mn(K) → Gln(K)

induces maps
exp: sln(K) → Sln(K),
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and
exp: gS → GS(K).

Let G be any of the groups Gln(K), Sln(K) or GS(K). Then there is a neighborhood U of In

in G, on which log is defined, and such that exp induces an homeomorphism log(U) → U .
The inverse of exp |log(U) is given by log |U .

In particular we have maps
exp: son → On(K),

exp: son → SOn(K),

and
exp: spn(K) → Spn(K),

and if G is one of the groups On(K), SOn(K) or Spn(K), there is an open subset U of G,
such that these maps induce a homeomorphism log(U) → U with inverse log |log(U).

Proof: We have already proved the assertions of the proposition for Gln(K). To prove
them for Sln(K) we take X in sln. It follows from assertion (iii) Theorem 2.3.6 that
det exp X = exp tr X = exp 0 = 1. Consequently, when K = R, we have that exp X is in
Sln(K), as asserted.

To prove the second assertion about Sln(K) we take A in U∩Sln(K). It follows from asser-
tion (iii) of Theorem 2.3.6 that, when det A = 1, we have that exp tr log A = det exp log A =
det A = 1. Consequently, when K = R, we have that tr log A = 0.

When K = C we have to shrink U in order to make sure that | tr log A| < 2π. Then we
have that tr log A = 0. We have shown that exp induces a bijective map sln(K)∩ log(U) →
Sln(K) ∩ U . Both this map and its inverse, induced by the logarithm , are induced by
continuous maps, and the metric on Sln(K) and sln(K) are induced by the metrics on
Gln(K) respectively gln(K). Consequently, the induced map and its inverse are continuous
and therefore homeomorphisms.

Let X be in gS(K). That is, we have tXS+SX = 0. Since S is assumed to be invertible,
the latter equation can be written S−1tXS + X = 0. Since S−1tXS = −X we have that
S−1tXS and X commute. Hence we can use assertions (ii) and (v) of Proposition 2.2.8 to
obtain equalities In = exp(S−1tXS + X) = exp(S−1tXS) exp X = S−1(exp tX)S exp X =
S−1(texp X)S exp X. Consequently (texp X)S exp X = S, and exp X is in GS(K), as
asserted.

To prove the second assertion about GS(K) we take A in GS(K). Then tASA = S or
equivalently, S−1tASA = In. Consequently we have that log((S−1tAS)A) = 0. We have
that S−1tAS is the inverse matrix of A, and hence that S−1tAS and A commute. Since the
map of Gln(K) that sends A to tA is continuous, as is the map that sends A to S−1AS, we
can choose U such that log is defined on S−1(tA)S for all A in U . It follows from assertion
(v) of Theorem 2.3.6 that log((S−1tAS)A) = log(S−1tAS)+log A = S−1(log tA)S+log A =
S−1(tlog A)S + log A. We have proved that S−1(tlog A)S + log A = 0. Multiply to the left
with S. We get tlog AS + S log A = 0. That is log A is in gS(K). We have proved that
exp induces a bijective map gS(K)∩ exp−1(U) → GS(K)∩U . A similar argument to that
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used for Sln(K) proves that this bijection is a homeomorphism. Hence we have proved the
second assertion of the proposition for GS(K).

All that remains is to note that SOn(K) is an open subset of On(K) containing In. ¤

Exercises
2.3.1. Show that for all matrices X and Y in Mn(K), with Y invertible, the formula tr(Y −1XY ) =
trX holds.

2.3.2. Use the fact that diagonalizable matrices are dense in Mn(C) to prove the Cayley-Hamilton
Theorem for real and complex matrices.

2.3.3. Let X = ( 1 1
0 1 ).

(a) For every positive real number ε, find a matrix Y in Mn(C) such that Y is diagonalizable
and ‖Y −X‖ < ε.

(b) Can you find a matrix Y in Mn(R) which is diagonalizable, and such that ‖Y −X‖ < ε,
when ε is some small positive real number?

2.4 Analytic functions
We shall, in this section, introduce analytic functions and study their basic properties.

The exponential and logarithmic functions are analytic and we shall see how the proper-
ties of the matrix groups that were discussed in Section 2.2 can then be reinterpreted as
asserting that the matrix groups are analytic manifolds.
2.4.1. Let I be the set of n-tuples i = (i1, . . . , in) of nonnegative integers ik and letR denote
the set of n-tuples r = (r1, . . . , rn) of positive real numbers ri. For each r = (r1, . . . , rn)
and each n-tuple of variables x = (x1, . . . , xn), we write ri = ri1

1 · · · rin
n and xi = xi1

1 · · ·xin
n .

Moreover, we write |i| = i1 + · · ·+ in and for j in I we write
(

j
i

)
=

(
j1
i1

) · · · (jn

in

)
.

For any two n-tuples of real numbers r = (r1, . . . , rn) and s = (s1, . . . , sn), we write
r < s if ri < si for i = 1, . . . , n and for x = (x1, x2, . . . , xn) in Kn, we denote by |x| the
n-tuple (|x1|, |x2|, . . . , |xn|). The difference between the notation |x| and |i| will be clear
from the context.

We shall, in the following, use polydiscs instead of balls. As we shall see, these are
equivalent as far as topological and metric properties, like openness and analyticity, is
concerned. However, for analytic functions polydiscs are notationally more convenient
than balls.
Definition 2.4.2. Let r be in R and x in Kn. The open polydisc around x with radius r
is the set

P (x, r) = {y ∈ Kn : |x− y| < r}.
Remark 2.4.3. Let P (x, r) be a polydisc, and let ε = mini ri. Then we have that B(x, ε) ⊆
P (x, r), where B(x, ε) is the ball in Kn with respect to the norm of Definition 2.1.1, with
C = 1. Conversely, given a ball B(x, ε) we have that P (x, r) ⊆ B(x, ε), with r = (ε, . . . , ε).
It follows that every polydisc is open in Kn, and conversely that every ball can be covered
by polydiscs. Hence a set is open if and only if it can be covered by polydiscs.
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Definition 2.4.4. We say that a formal power series (see Exercise 1.3.4 and Example 1.3.7)
∑
i∈I

cix
i,

with coefficients in K converges in the polydisc P (0, r) if the sequence s1, s2, . . . , where

sm =
∑

|i|≤m

|ci|r′i,

converges for all r′ < r. It follows that s1(x), s2(x), . . . with sn(x) =
∑

|i|≤n cix
i converges

uniformly in P (0, r′) (see Exercise 2.2.3). In particular the series defines a continuous
function

f(x) =
∑
i∈I

cix
i

in P (0, r).

2.4.5. We note that the function f(x) is zero for all x where it is defined, if and only if
ci = 0, for all i ∈ I. Indeed, this is clear for n = 1 and follows in the general case by
induction on n.

Let r′ < r and let C =
∑

i∈I |ci|r′i. Then
|cir

′i| ≤ C for all i ∈ I.

Conversely, given a formal power series
∑

i∈I cix
i, such that

|ci|ri ≤ C,

for some C, then s1(x), s2(x), . . . with sm(x) =
∑

|i|≤m cix
i converges uniformly in P (0, r′)

for all r′ < r. In particular
∑

i∈I cix
i converges in P (0, r). Indeed, we have that

∑
i∈I

|ci|r′i =
∑
i∈I

|ci|ri r
′i

ri
≤ C

∑
i∈I

r′i

ri
= C

n∏
i=1

(1− r′i
ri

)−1.

Definition 2.4.6. Let U be an open subset of Kn. A function
g : U → K

is analytic in U if, for each x in U , there is an r in R and a formal power series f(x) =∑
i∈I cix

i which is convergent in P (0, r), such that
g(x + h) = f(h) for all h ∈ P (0, r) such that x + h ∈ U.

A function
g = (g1, . . . , gm) : U → Km

is analytic, if all the functions gi are analytic.

Example 2.4.7. All maps polynomial maps Φ : Kn → Km, that is, maps given by Φ(x) =
(f1(x), . . . , fm(x)), where the fi are polynomials in n variables, are analytic.
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Example 2.4.8. It follows from the estimates of of Paragraphs 2.2.3 and 2.2.10, and the
definitions of the exponential and logarithmic functions in Definitions 2.2.4 and 2.2.11,
that the exponential and logarithmic functions are analytic.
Proposition 2.4.9. Let f(x) =

∑
i∈I cix

i be a formal power series which is convergent in
P (0, r). We have that

(i) Dif =
∑

j≥i cj

(
j
i

)
xj−i is convergent in P (0, r).

(ii) For x in P (0, r) the series
∑

i∈I Dif(x)hi converges for h in P (0, r − |x|).
(iii) We have that

f(x + h) =
∑
i∈I

Dif(x)hi for h ∈ P (0, r − |x|).

In particular we have that f is analytic in P (0, r).

Proof: Let x ∈ P (0, r). Choose an r′ such that |x| ≤ r′ < r and let s = r − r′. We have
that

(x + h)j =
∑
i≤j

(
j

i

)
xj−ihi.

Hence, we obtain that

f(x + h) =
∑
j∈I

cj

(∑
i≤j

(
j

i

)
xj−ihi

)
for h ∈ P (0, s).

For |h| ≤ s′ < s we have that
∑
j∈I

∑
i≤j

|cj

(
j

i

)
xj−ihi| ≤

∑
j∈I

∑
i≤j

|cj|
(

j

i

)
r′j−i

s′i =
∑
j∈I

|cj|(r′ + s′)j < ∞. (2.4.9.1)

The last inequality of Formula 2.4.9.1 holds since f converges in P (0, r) and r′ + s′ <
r. Assertions (i) and (ii) follow from the inequality 2.4.9.1. Moreover, it follows from
inequality 2.4.9.1 that we can rearrange the sum in the above expression for f(x + h).
Consequently

f(x + h) =
∑
i∈I

(∑
i≤j

cj

(
j

i

)
xj−i

)
hi =

∑
i∈I

Dif(x)hi.

and we have proved the proposition. ¤
2.4.10. Proposition 2.4.9 and its proof indicate that analytic functions behave in a similar
way to the differentiable functions from calculus. We shall next give another example of
such behavior.

Let V be an open subset in Kp and g : V → Kn an analytic function such that the
image g(V ) is contained in an open subset U of Kn, and let f : U → Km be an analytic
function. Then the composite function fg : V → Km of g, is analytic. Indeed, it suffices to
consider a neighborhood of 0 in Kp, and we can assume that g(0) = 0, that f(0) = 0, and
that m = 1. Let f(x) =

∑
i∈I cix

i be a convergent series in P (0, s), for some s in R and
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g = (g1, . . . , gn), with gk(y) =
∑

j∈J dk,jy
j, be an n-tuple of series that are convergent in

P (0, r) for some r in R, and where J are p-tuples of non-negative integers. Choose r′ < r
such that ∑

i∈J
|dk,i|r′i <

sk

2
for k = 1, . . . , n.

Then, for h ∈ P (0, r′), we have that
∑
i∈I

|ci|(
∑
j∈J

|d1,j||h|j, . . . ,
∑
j∈J

|dn,j||h|j)i ≤
∑
i∈I

|ci|
(s

2

)i

< ∞.

Consequently, we have that
∑
i∈I

ci(
∑
j∈J

d1,jy
j, . . . ,

∑
j∈J

dn,jy
j)i (2.4.10.1)

converges in P (0, r′), and the series 2.4.10.1 represents fg(y).

Definition 2.4.11. Let U be an open subset of Kn and let
f : U → Km

be a function. If there exists a linear map g : Kn → Km such that

lim
‖h‖→0

‖f(x + h)− f(x)− g(h)‖
‖h‖ = 0,

where ‖h‖ = maxi |hi|, we say that f is differentiable at x. Clearly, g is unique if it exists,
and we write f ′(x) = g and f ′(x)h = g(h), and call f ′(x) the derivative of f at x. We say
that f is differentiable in U if it is differentiable at each point of U .

Remark 2.4.12. Usually the linear map f ′(x) is represented by an m×n matrix with respect
to the standard bases of Kn and Km and the distinction between the matrix and the map
is often suppressed in the notation. The matrix f ′(x) is referred to as the Jacobian of the
map f .

When f = (f1, . . . , fm) we have that f is differentiable, if and only if all the fi are
differentiable, and we have that f ′ = (f ′1, . . . , f

′
m).

Proposition 2.4.13. Let f : U → K be an analytic function defined on an open subset U
of Kn, and let f(x) =

∑
i∈I cix

i. Then f(x) is differentiable in U and the derivative f ′(x)

is an analytic function f ′ : U → HomK(Kn,K) = Ǩn given by

f ′(x)h =
∑

|i|=1

Dif(x)hi =
∑

j≥i,|i|=1

cj

(
j

i

)
xj−ihi, for all h ∈ Kn,

with the notation of Proposition 2.4.9.

Proof: It follows from Proposition 2.4.9 (iii) that f(x + h)− f(x)−∑
|i|=1 Dif(x)hi is an

analytic function of h in P (0, r) whose terms in h of order 0 and 1 vanish. Consequently
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we have that

lim
‖h‖→0

‖f(x + h)− f(x)−∑
|i|=1 Dif(x)hi‖

‖h‖ = 0,

that is f ′(x)h =
∑

|i|=1 Dif(x)hi. It follows from Proposition 2.4.9 that f ′(x) is analytic.
¤

Remark 2.4.14. Let m = 1 in Definition 2.4.11 and let f be analytic. For i = 1, . . . , n we
let ∂f

∂xi
(x) be the (1, i)’th coordinate of the 1 × n matrix A. It follows from Proposition

2.4.13 that
∂f

∂xi

(x) = D(0,...,1,...,0)f(x),

where the 1 in the exponent of D is in the i’th place. Consequently, we have that

f ′(x) =

(
∂f

∂x1

, . . . ,
∂f

∂xn

)
.

For any m and with f = (f1, . . . , fm) we obtain that f ′(x) is the m× n matrix f ′(x) =
( ∂fi

∂xj
(x)).

When g : V → Kn is an analytic function from an open subset V in Kp such that
g(V ) ⊆ U , Formula 2.4.10.1 shows that for y in V we have that

(fg)′(y) = f ′(g(y))g′(y) (2.4.14.1)

In fact we may clearly assume that y = 0 and g(y) = 0. Let e1, . . . , en and f1, . . . , fp

be the standard bases of Kn, respectively Kp. Then, when m = 1, we get f ′(0) =

(ce1 , . . . , cen) and g′(0) = (di,fj
). Formula 2.4.10.1 gives that ∂(fg)

∂yi
(0) =

∑n
j=1 cej

dj,fi
, and

thus (
∂gj

∂yj
(x))( ∂f

∂x1
(0), . . . , ∂f

∂xn
(0)) = (∂(fg)

∂y1
(0), . . . , ∂(fg)

∂yp
(0)). Hence we have that (fg)′(0) =

f ′(0)g′(0).

Example 2.4.15. Let f : K → Km be a differentiable function. For t in K we have a
linear map f ′(t) : K → Km. We shall identify the linear maps g : K → Kn with Km by
identifying g with g(1). Then f ′(t) is considered as an element in Km and we obtain a
map f ′ : K → Km which maps t to f ′(t).

Let X be in Mn(K) and let eX : K → Mn(K) be the map defined by eX(t) = exp(Xt).
It follows from Example 2.4.8 that eX is analytic. Hence we have a map e′X : K → Mn(K).
It follows from Exercise 2.4.1 that e′X(t) = exp′(Xt)X and from Proposition 2.4.13 that
e′X is analytic. We have that e′X(t) = XeX(t). In fact, fix an elements t in K and define
et : Mn(K) → Mn(K) and e′t : Mn(K) → Mn(K) by et(X) = eX(t) and e′t(X) = e′X(t). We
shall prove that Xet(X) = e′t(X). It follows from Example 2.4.8 and Proposition 2.4.13
that et and e′t are analytic, and in particular continuous, as we noted in Definition 2.4.4.
Consequently it follows from Lemma 2.3.2 and Corollary 2.3.5 that it suffices to show that
Xet(X) and e′t(X) are equal on diagonalizable matrices X. It follows from assertion (v)
of Proposition 2.2.8 that Y −1XY et(Y

−1XY ) = Y −1XY eY −1XY (t) = Y −1XeX(t)Y . and
from Exercise 2.4.1 that e′t(Y

−1XY ) = e′Y −1XY (t) = (Y −1eXY )′(t) = Y −1e′X(t)Y . Hence,
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to prove that et = e′t it suffices to prove that they are equal on diagonal matrices. The
latter equality follows from the sequence of equalities:

(
exp

( x1t ··· 0
... ... ...
0 ··· xnt

))′
(t) =

(
exp(x1t) ··· 0

... ... ...
0 ··· exp(xnt)

)′

(t) =

(
exp′(x1t)′(t) ··· 0

... ... ...
0 ··· exp′(xnt)′(t)

)

=

(
x1 exp(x1t) ··· 0

... ... ...
0 ··· xn exp(xnt)

)
= exp

( x1 ··· 0
... ... ...
0 ··· xn

)
exp

( x1t ··· 0
... ... ...
0 ··· xnt

)
.

Remark 2.4.16. The formula e′X = XeX can also easily be proven using Proposition
2.4.13, observing that expm(Xt)′(t) = X expm−1(Xt) and that the limit of the sequence
{expm(Xt)′(t)}m=0,1,... is e′X(t), and the limit of {X expn(Xt)}m=0,1,... is XeX(x).

Remark 2.4.17. Let G be one of the groups Gln(K), Sln(K) or GS(K), for some invert-
ible S. It follows from Proposition 2.3.9 that for each matrix group G there is an open
neighborhood U of the identity, and an open subset V of some vector space, such that
the exponential function induces an isomorphism exp: V → U , with inverse log |U . Let
A be an element in G. There is a map λA : G → G, called left translation, defined by
λA(B) = AB. The left translations are given by polynomials, hence they are analytic.
The left translation λA induces a homeomorphism λA|U : U → λA(U) of metric spaces
onto the open neighborhood λA(U) of A, with inverse λA−1 . Consequently, for each A,
we have a homeomorphism ϕA : V → UA onto some neighborhood of A. Clearly, if we
have another such homeomorphism ϕB, such that UA ∩ UB 6= ∅, we have that the map
ϕ−1

A (UA ∩ UB) → ϕ−1
B (UA ∩ UB) induced by ϕ−1

B ϕA, is an analytic map. We summarize
these properties by saying that G is an analytic manifold.

Exercises
2.4.1. Let X be an n× n-matrix of the form X(x) = (fij(x)), where the functions fij : V n

K → K
are analytic, and let Y be in Gln(K). Show that the the derivative (Y −1XY )′ of the function
Y −1XY : V n

K → Mn(K), which takes x to Y −1X(x)Y , is equal to Y −1X ′(x)Y .

2.4.2. Let X be in Mn(K) and let f : K → Mn(K) be defined by f(x) = Xt for t in K. Show
that, with the identifications of Example 2.4.15 we have that f ′ : K → Mn(K) is the constant
function f ′(t) = X.

2.4.3. Let f : K → Mn(K) be an analytic function and let Y be in Mn(K). We define Y −1fY :
K → Mn(K) to be the function that maps t in K to Y −1f(x)Y . Show that (Y −1fY )′ : K →
Mn(K) satisfies (Y −1fY )′(t) = Y −1f ′(t)Y .

2.4.4. Determine the derivative of the exponential map exp : M2(C) → Gl2(C).

2.5 Tangent spaces of matrix groups
We shall, in this section, determine the tangent spaces of all the matrix groups that we

have encountered so far.
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Definition 2.5.1. A curve in V n
K is an analytic map γ : B(a, r) → V n

K, from some ball
B(a, r) in K. The tangent of the curve γ at γ(a) is the vector γ′(a) in V n

K.
Let γ : B(a, r) → Mn(K) be a curve and let G be one of the matrix groups Gln(K),

Sln(K), or GS(K), for some invertible S. We say that γ is a curve in G if γ(B(a, r)) is in
G and if γ(a) = In.

The tangent space TIn(G) of G at In is the set of the tangent vectors at a for all curves
γ : B(a, r) → Mn(K) in G.
Remark 2.5.2. Since SOn(K) is an open subset of On(K) containing In, we have that
SOn(K) and On(K) have the same tangent space.
Example 2.5.3. Let X be a matrix in Mn(K). The derivative exp′(tX) of the curve
γ(t) : K → Mn(K) that is defined by γ(t) = exp(tX) is equal to X(exp tX) by Exam-
ple 2.4.15 (see also Exercise 2.5.3). When X is in gln(K), sln(K) or gS(K), for some S, it
follows from Proposition 2.3.9 that γ has image contained in Gln(K), Sln(K) or GS(K),
respectively.

In particular, the tangent spaces of Gln(K), Sln(K), On(K), SOn(K) and Spn(K) contain
the vector spaces gln(K), sln(K), son(K), son(K), and spn(K), respectively.

We shall next show that the inclusions of spaces of Example 2.5.3 are equalities.
Proposition 2.5.4. The tangent spaces at In of the matrix groups Gln(K), Sln(K) or
GS(K), where S is an invertible matrix, are the vector spaces gln(K), sln(K), and gS(K)
respectively.

In particular, the tangent spaces of On(K), SOn(K) and Spn(K) are son(K), son(K),
and spn(K) respectively.

Proof: Let G be one of the groups Gln(K), Sln(K), or GS(K), and let γ : B(a, r) → Mn(K)
be a curve from a ball B(a, r) in K, such that γ(a) = In. It follows from Example 2.4.15,
or Exercise 2.5.3, that is suffices to show that, when the image of γ is in G, the derivative
γ′(a) is in gln(K), son(K) or gS(K), respectively.

For Gln(K) this is evident since the tangent space is the whole of gln(K) = Mn(K). If
the image of γ is in Sln(K), we have that det γ(t) = 1 for all t in B(a, r). We differentiate
the last equality and obtain that 0 = (det γ)′(a) = tr(γ′)(a) (see Exercise 2.5.1), that is,
the matrix γ′(a) is in sln(K).

Let γ be in GS(K). That is, we have tγ(t)Sγ(t) = S, for all t in B(a, r). We differentiate
both sides of the latter equation and obtain that tγ′(t)Sγ(t) + tγ(t)Sγ′(t) = 0, for all t
in B(a, r) (see Exercise 2.5.2). Consequently, we have that tγ′(0)Sγ(0) + tγ(0)Sγ′(0) =
tγ′(0)SIn + tInSγ′(0) = tγ′(0)S + tSγ′(0), and we have proved the first part of the propo-
sition.

For the last part of the proposition it suffices to note that it follows from Remark 2.5.2
that SOn(K) and On(K) have the same tangent space. ¤
Definition 2.5.5. Let G be one of the groups Gln(K), Sln(K), or GS(K), where S is
invertible. The dimension dim G is the dimension of the vector space TIn(G).
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Group n Center Dim.
Gln(C) arb. K∗ n2

Sln(C) arb. Z/nZ n2 − 1

On(C) arb. {±1} n(n−1)
2

SOn(C) even {±1} n(n−1)
2

SOn(C) odd 1 n(n−1)
2

Spn(C) arb. {±1} n(n+1)
2

Table 1. The classical groups over the complex numbers

Proposition 2.5.6. The dimensions of the matrix groups are:
dim Gln(K) = n2, dim Sln(K) = n2 − 1, dim On(K) = dim SOn(K) = n(n−1)

2
, and

dim Spn(K) = n(n+1)
2

.

Proof: We shall use the description of the tangent spaces of Proposition 2.5.4.
The dimension of gln(K) = Mn(K) is clearly n2. That the dimension of the space sln(K)

of matrices with trace zero is n2 − 1 follows from Exercise 2.5.4. The spaces On(K) and
SOn(K) have the same tangent space son(K) consisting of skew-symmetric matrices. It
follows from Exercise 2.5.5 that this dimension is n(n−1)

2
.

The space spn(K) consists of invertible matrices X such that tXS + SX = 0, where
S is the matrix of the form 1.4.1.1. We have that the linear map Mn(K) → Mn(K)
that sends a matrix X to SX is an isomorphism (see Exercise 2.5.6). The latter map
sends spn(K) isomorphically onto the space of symmetric matrices. Indeed, we have that
tXS + SX = −tX tS + SX = SX − t(SX). However, the space of symmetric matrices has
dimension n(n+1)

2
(see Exercise 2.5.7). ¤

We summarize the results of Sections 2.5 and 1.10 in Table 1.

Exercises
2.5.1. Given an n × n matrix X(x) = (fij(x)), where the coordinates are analytic functions
fij : B(b, s) → K on a ball B(b, s) in V m

K . We obtain an analytic function detX : B(b, s) → K
defined by detX(t) = det(X(t)) for t in B(b, x). Show that

(detX)′(t) =
n∑

i=1

det

(
f11(t) ... f ′1i(t) ... f1n(t)

...
...

...
fn1(t) ... f ′ni(t) ... fnn(t)

)
.

Assume that X(0) = In. Show that (detX)′(0) =
∑n

i=1 f ′ii(0) = tr(X ′)(0).

2.5.2. Let X(t) = (fij(t)) and Y (t) = (gij(t)) be functions B(a, r) → Mn(K) given by analytic
functions fij and gij on a ball B(a, r) in K. Show that (XY )′(t) = X ′(t)Y (t) + X(t)Y ′(t).

2.5.3. Let X be a matrix in Mn(K). Prove the equality expm(Xt)′ = X expm(Xt), and use this
to show that the tangent of the curve γ : K → Mn(K) given by γ(t) = exp(tX) at t is X exp(tX).

2.5.4. Show that the vector space of matrices in Mn(K) with trace zero, that is with the sum of
the diagonal elements equal to zero, has dimension n2 − 1.
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2.5.5. Show that the vector space of matrices in Mn(K) consisting of skew-symmetric matrices
has dimension n(n−1)

2 .

2.5.6. Fix a matrix B in Gln(K). Show that the map Mn(K) → Mn(K) that sends a matrix X
to the matrix BX is an isomorphism of vector spaces.

2.5.7. Show that the subset of Mn(K) consisting of symmetric matrices is a vector space of
dimension n(n+1)

2 .

2.5.8. Which of the groups Gln(C), Sln(C), On(C), SOn(C), and Spn(C), can be distinguished
by the table of this section.

2.5.9. Determine the the dimension and a basis of the tangent space gS(R) of the Lorentz group
defined by the matrix S =

(
In−1 0

0 −1

)
.

2.6 Lie algebras of the matrix groups
Lie algebras will become important in Chapter 4. In this section we indicate how matrix

groups are Lie algebras.

Remark 2.6.1. In addition to the usual matrix multiplication on the space of matrices
Mn(K) we have a map

[ , ] : Mn(K)×Mn(K) → Mn(K)

defined by [A,B] = AB − BA. It is easy to check (see Exercise 2.6.1) that [ , ] is an
alternating bilinear map which satisfies the Jacobi Identity

[
A, [B, C]

]
+

[
C, [A,B]

]
+

[
B, [C, A]

]
= 0, for all A,B, C ∈ Mn(K)

We summarize these properties by saying that Mn(K) is a Lie algebra. When Mn(K) is
considered as a Lie algebra we shall denote it by gln(K). A subspace V of gln(K) such
that [A,B] ∈ V , for all A and B in V , is called a Lie subalgebra of gln(K). Clearly the
Jacobi Identity holds for all elements in V . Hence V is itself a Lie algebra.

Example 2.6.2. The tangent spaces gln(K), sln(K), and gS(K), when S is invertible, of
Gln(K), Sln(K), and GS(K) respectively, are all Lie subalgebras of gln(K).

In particular, the tangent spaces son(K), son(K), and spn(K) of On(K), SOn(K), and
Spn(K) respectively, are Lie subalgebras of gln(K).

It follows from Exercise 2.6.2 that sln(K) is a Lie subalgebra of gln(K). That gS(K) is a
Lie subalgebra of gln(K) follows from the calculation [A,B]S + St[B, A] = (AB−BA)S +
St(AB −BA) = ABS − BAS + StBtA− StAtB = −AStB + BStA + StBtA− StAtB =
StAtB − StBtA + StBtA− StAtB = 0.
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Exercises
2.6.1. Show that [ , ] defines an alternating bilinear map on Mn(K) that satisfies the Jacobi
Identity.

2.6.2. Show that the subspace of matrices of gln(K) with trace zero is a Lie algebra.

2.6.3. Let V = K3 and define [ , ] as the cross product from linear algebra, that is,

[(x1, y1, z1), (x2, y2, z2)] = (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2).

Show that V becomes a Lie algebra with this product.

2.6.4. Show that the tangent space SO3(K) as a Lie algebra is isomorphic to the Lia algebra of
Problem 2.6.3.

2.6.5. Show that the tangent space so3(K) as a Lie algebra is isomorphic to the Lie algebra of
Problem PB:tredim.

2.6.6. In quantum mechanics, we have the Pauli spin matrices

1 = ( 1 0
0 1 ) , σx = ( 0 1

1 0 ) , σy =
(

0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

(i) Show that the set {1, σx, σy, σz} spans the Lie algebra gl2(C).
(ii) Show that the set {σx, σy, σz} spans a three dimensional sub Lie algebra of gl2(C) which

is identical to sl2(C).
(iii) Show that the Lie algebra of (ii) is isomorphic to the Lie algebras of Problem PB:tredim

and Problem 2.6.4.

2.7 One parameter subgroups of matrix groups
One parameter groups play an important part in the theory of Lie groups of Section 4.

In this section we determine the one parameter subgroups for matrix groups.

Definition 2.7.1. Let G be one of the matrix groups Gln(K), Sln(K) or GS(K), when
S is invertible. A one parameter subgroup of the matrix groups G is a curve γ : K → G,
which is also a group homomorphism. That is γ(t + u) = γ(t)γ(u), for all t and u in K.

Example 2.7.2. Let X be a matrix in TIn(G). It follows from Example 2.5.3 that γ : K →
G defined by γ(t) = exp(tX) is a curve in G. Since tX and sX commute, it follows from
Proposition 2.2.8 (ii), that γ is a one parameter group.

We shall show that all one parameter groups of the matrix groups are of the form of
Example 2.7.2.

Proposition 2.7.3. Let G be one of the matrix groups Gln(K), Sln(K) or GS(K), for some
invertible matrix S. Then all one parameter groups of G are of the form γ(t) = exp(tX),
for some X in gln(K), sln(K) or gS(K), respectively.

Proof: Let γ : K → G be a one parameter group. It follows from Proposition 2.3.9 and
Example 2.4.8 that there is a neighborhood U of In in G such that the logarithm induces an
analytic function log : U → Mn(K). We obtain an analytic map log γ : B(a, r) → Mn(K),
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on some ball B(a, r) in K, and log γ(a) = log(In) = 0. For all t and u in B(a, r), such that
t + u is in B(a, r) we have that

log γ(t + u)− log γ(t)− (log γ)′(t)u = log(γ(t)γ(u))− log(γ(t))− (log γ)′(t)u

= log(γ(t)) + log(γ(u))− log(γ(t))− (log γ)′(t)u = log γ(u)− (log γ)′(t)u.

Consequently, we have that

lim
|u|→0

‖ log γ(t + u)− log γ(t)− (log γ)′(t)u‖
‖u‖ = lim

|u|→0

‖ log γ(u)− (log γ)′(t)u‖
‖u‖ = 0.

That is, we have (log γ)′(0) = (log γ)′(t). Hence (log γ)′(t) is constant equal to X =
(log γ)′(0) on some ball B(a, ε) (see Exercise 2.7.1). We thus have that log γ(t) = tX.
Using the exponential function on both sides of log γ(t) = tX, and Theorem 2.3.6 (i), we
obtain that γ(t) = exp(tX), for all t in the ball B(a, ε). It follows that γ(t) = exp(tX)
for all t. Indeed, given an element t of K. Choose an integer n such that 1

n
t is in B(a, ε).

Then we obtain that γ(t) = γ(n
n
t) = γ( 1

n
t)n = exp( 1

n
tX)n = exp(n

n
tX) = exp(tX), which

we wanted to prove. ¤

Exercises
2.7.1. let U be an open subset of K and let f : U → Km be an analytic function. Show that if
the linear map f ′ : K → Km is constant, that is f ′(t) is the same element x in Km for all t in U ,
then f(t) = xt for all t in U .
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3 The geometry of matrix groups
In Chapter 2 we introduced a geometric structure on the classical groups of Chapter 1

with coefficients in the real or complex numbers. The main tool was the exponential
function. In this chapter we shall consider the geometric structure from a much more
general point of view, that of analytic manifolds. The main tool here is the Implicit
function Theorem for analytic maps.

We prove the Implicit Function Theorem and show that the classical groups studied in
Chapter 2 are algebraic manifolds. Analytic manifolds are introduced after we have defined
and studied topological spaces. We define and study tangent spaces of analytic manifolds,
and show that the definition of tangent spaces coincides with that given in Chapter 2 for
matrix groups. More generally we define tangent spaces of analytic sets and give some
criteria for computing the tangent space in the most common geometric situations. Using
the so called epsilon calculus we use these results to compute the tangent spaces of the
classical groups of Chapter 2.

In order to further distinguish between the matrix groups we introduce, in the final
section, two topological invariants, connectedness and compactness.

Unless explicitly stated otherwise, the field K will be the real or the complex numbers
throughout this chapter.

3.1 The Inverse Function Theorem
We shall in this section prove the Inverse Function Theorem and show how several

versions of the Implicit Function Theorem are deduced from the inverse function theorem.
Most of these results are probably known for the differentiable case from a course in
calculus of several variables. The reason why we give proofs is that the analytic case,
although easier, is less standard in calculus books.

Theorem 3.1.1. (Inverse Function Theorem) Let W be an open subset of Kn and Φ : W →
Kn an analytic function. Moreover let y be a point in W such that Φ′(y) is invertible. Then
there exists an open neighborhood U of y in W and an open set V in Kn such that Φ is
injective on U and Φ(U) = V . Moreover the inverse function Φ−1 : V → Kn, defined by

Φ−1(Φ(x)) = x, for all x ∈ U ,

is analytic on V .

Proof: We may assume that y = Φ(y) = 0 and, following Φ with the inverse of the analytic
linear function Φ′(0) : Kn → Kn, we may assume that

Φk(x) = xk −
∑

|i|>1

ckix
i = xk − ϕk(x), for k = 1, 2, . . . , n.

Moreover, we may replace Φ(x) by CΦ(x/C) for some positive real number C, and assume
that |cki| < 1 for all i in I.
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Suppose that the analytic function Ψ = (Ψ1, Ψ2, . . . , Ψn), given by

Ψk(y) =
∑
i∈I

dkiy
i

is an inverse function to Φ. Then y = Φk(Ψ(y)) = Ψk(y)−ϕk(Ψ(y)) so that Ψ must satisfy
the equation

Ψk(y) =
∑
i∈I

dkiy
i = yk + ϕk(Ψ(y))

= yk +
∑

|i|>1

cki(
∑

|j|>0

d1jy
j)i1 · · · (

∑

|j|>0

dnjy
j)in , for k = 1, . . . , n.

Comparing coefficients on both sides of the equation we see that dk(0,...,1,...,0) is 1 when the
1 in (0, . . . , 1, . . . , 0) is in the k’th coordinate, and 0 otherwise. Moreover, we see that dkj

is a linear combination with positive integral coefficients of monomials in the dmi and the
cmi with |i| < |j|. By induction on |i| we obtain that

dkj = Pkj(cmi), (3.1.1.1)

where Pki is a polynomial with positive integral coefficients that depend only on cmi,
with |i| < |j|. In particular we have that each Ψk is uniquely determined if it exist. The
problem is to show that the formal power series determined by the solutions of the equation
3.1.1.1 converges. To this end, assume that we can find power series ϕ̄k =

∑
i∈I c̄kix

i, for
k = 1, . . . , n, with real positive coefficients c̄ki that converge in some polydisc around 0
in Kn and which is such that the unique power series Ψ̄k =

∑
i∈I d̄kix

i determined by the
equation

d̄ki = Pki(c̄mj),

for k = 1, . . . , n, and hence satisfy

Ψ̄k(y) = yk + ϕ̄k(Ψ̄(y)), for k = 1, . . . , n,

converge in some polydisc around 0 and satisfy the conditions

|cki| ≤ c̄ki, for all k and i.

Then we have that

|dki| = |Pki(cmi)| ≤ Pki(|cmj|) ≤ Pki(c̄mj) = d̄ki,

since Pki has positive integral coefficients. Consequently Ψk is dominated by Ψ̄k and thus
converges for k = 1, . . . , n. It remains to find such series ϕ̄k, for k = 1, 2, . . . , n.

Assume that n = 1. We have that, for any positive real number p, the series

ϕ̄(p)(x) =
∞∑
i=2

(px)i =
(px)2

1− px
,
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will satisfy the conditions. Indeed, it converges and satisfies |ci| ≤ c̄i, since |ci| ≤ 1. We
must show that the corresponding Ψ̄ (p) converges. However, we have the equations

Ψ̄ (p)(y) = y + ϕ̄(p)(Ψ̄ (p)(y)) = y +
(pΨ̄ (p)(y))2

1− pΨ̄ (p)(y))
.

Solving the latter equation we obtain that

Ψ̄ (p)(y) =
1

2

(1 + yp)−
√

(1 + yp)2 − 4(p2 + p)y

p2 + p
,

which converges in a polydisc around 0.
Let n > 1 and put

ϕ̄k(x) = ϕ̄(1)(
n∑

i=1

xi) =
∞∑
i=2

(x1 + · · ·+ xn)i =
(x1 + · · ·+ xn)2

1− (x1 + · · ·+ xn)
, for k = 1, 2, . . . , n.

Then ϕ̄k converges in a neighborhood of 0 and we have that |cki| < c̄ki for all k and i, since
|cki| < 1. Observe that Φ̄j(x) − Φ̄k(x) = xj − xk, for k 6= j. Hence, if we can find the
average of x1, . . . , xn, from Φ̄1(x), . . . , Φ̄n(x), we can determine the inverse function Ψ̄ . In
fact we have that
1

n

n∑

k=1

Φ̄k(x) =
1

n

n∑

k=1

xk− ϕ̄(1)

(
n∑

k=1

xk

)
=

1

n

n∑

k=1

xk− ϕ̄(n)

(
1

n

n∑

k=1

xk

)
= Φ̄(n)

(
1

n

n∑

k=1

xk

)
.

(3.1.1.2)
Since Ψ̄ (n) and Φ̄(n) are inverses we obtain, by applying Ψ̄ (n) to both sides of Equation
3.1.1.2, we get that 1

n

∑n
k=1 xk = Ψ̄ (n)

(
1
n

∑n
k=1 Φ̄k(x)

)
, that is,

1

n

n∑

k=1

Ψ̄k(y) = Ψ̄ (n)

(
1

n

n∑

k=1

yk

)
.

We can now find Ψ̄ by

Ψ̄k(y) =
1

n

∑

j 6=k

(
Ψ̄k(y)− Ψ̄j(y)

)
+

1

n

n∑
j=1

Ψ̄j(y) =
1

n

∑

j 6=k

(yk − yj) + Ψ̄ (n)

(
1

n

n∑
j=1

yj

)
,

for k = 1, 2, . . . , n, where all terms in the equations converge.
We have proved that there is a polydisc P (0, r) around 0, and an analytic function

Ψ : P (0, s) → Kn where P (0, s) ⊆ Φ(P (0, r)) which is an inverse to Φ|P (0,r). The open sets
V = P (0, s) and U = Φ−1(V ) satisfy the conditions of the theorem. ¤
Theorem 3.1.2. (Implicit Function Theorem — Dual Form) Let Φ : V → Km+n be an
analytic map where V is open in Kn. Suppose that x is a point in V where Φ′(x) has rank
n. Then there exist an open set U in Km+n and an analytic function Ψ : U → Km+n such
that

(i) Ψ(U) is an open neighborhood of Φ(x) in Km+n.
(ii) Ψ is injective with an analytic inverse Ψ−1 : Ψ(U) → U .
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(iii) There is an n-dimensional linear subspace W in Km+n such that Ψ gives a bijection
between the sets Φ(V ) ∩ Ψ(U) and W ∩ U .

Proof: Renumbering the coordinates of Km+n we may assume that the lower n × n-
minor of Φ′(a) is non-zero. Hence we can write Φ as (Φ1, Φ2), where Φ1 : V → Km and
Φ2 : V → Kn with rank Φ′2(a) = n. Define the analytic map Ψ : Km × V → Km+n by
Ψ(x, y) = (x + Φ1(y), Φ2(y)), for x ∈ Kn, y ∈ V . Then we have that

Ψ ′(0, a) =

(
Im Φ′1(a)
0 Φ′2(a)

)

is invertible and it follows from the Inverse Function Theorem 3.1.1 that there is an analytic
inverse U ′ → Km ×Kn ∼= Km+n defined on some neighborhood U ′ of Ψ(0, a). Let U =
Ψ−1(U ′). Since we have that Φ(y) = Ψ(0, y) for all y ∈ V , such that (0, y) ∈ U , we get that
Φ(V ) ∩ Ψ(U) = Ψ(W ∩ U), where W is the n-dimensional subspace {(x, y) ∈ Km ×Kn

∣∣
x = 0} of Km+n. ¤
Theorem 3.1.3. (Implicit Function Theorem) Let U be an open subset of Km+n and let
Φ : U → Km be an analytic function. Suppose that x ∈ U is a point where Φ(x) = 0
and that Φ′(x) has rank m. Then there exist a neighborhood V of x in U and an analytic
function Ψ : V → Km+n, such that

(i) Ψ(V ) is open set in Km+n.
(ii) Ψ is injective with an analytic inverse Ψ−1 : Ψ(V ) → V .
(iii) There is an n-dimensional linear subspace W of Km+n such that Ψ gives a bijection

between the sets V ∩ Φ−1(0) and W ∩ Ψ(V ).

Proof: Renumbering the coordinates of Km+n we may assume that the leftmost m×m-
minor of Φ′(x) is non-zero. Let π1 and π2 be the projections of Km+n = Km×Kn to its two
factors and let W be the kernel of π1. Define Ψ : U → Km ×Kn by Ψ(y) = (Φ(y), π2(y)),
for all y ∈ U . Then Ψ is analytic and

Ψ ′(x) =

(
Φ′1(x) Φ′2(x)

0 In

)
,

where Φ′1(x) and Φ′2(x) are the m×m- respectively m× n-submatrices of Φ′(x) consisting
of the m first, respectively n last columns of Φ′(x). In particular Ψ ′(x) is invertible and we
can use the Inverse Function Theorem 3.1.1 to find an open subset V of U containing x
and an analytic inverse function Ψ−1 : Ψ(V ) → V . It is clear that for y in V we have that
Ψ(y) is in W if and only if Φ(y) = 0. ¤
Remark 3.1.4. We have stated the Implicit Function Theorem 3.1.3 in a slightly different
way from what is usually done in that we consider the embedding of the set of zeroes of Φ
into Km+n through the analytic map Ψ . Usually, only the restriction of Ψ to the subspace
W is mentioned in the Implicit Function Theorem. Of course the usual form follows from
the one given above.
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3.2 Matrix groups in affine space
We shall show how the Implicit Function Theorem can be used to induce a structure as

manifolds on groups that are defined as the zeroes of analytic functions.
We have seen in Example 2.1.17 that Gln(K) is open in Mn(K). However, the subgroups

Sln(K), GS(K), and GS(K), for a matrix S are not open sets in Gln(K). Quite to the
contrary they are zeroes of polynomials in the variables xij which are the matrix entries
(see Exercise 2.1.6). We have that Sln(K) is the subset of Gln(K) which consists of the
zeroes of the polynomial

det(xij) = 1. (3.2.0.1)

The set GS(K) is the zeroes of the n2 quadratic equations in the variables xij obtained by
equating the n2 coordinates on both sides of

(xij)S
t(xij) = S.

Finally, SGS(K) is the subset of Gln(K) which is the intersection of GS(K) with the
matrices satisfying Equation 3.2.0.1.

On the other hand we have that Gln(K) itself can be considered as the zeroes of poly-
nomials in the space Mn+1(K). Indeed we have seen in Example 1.2.11 that we have an
injection Φ : Gln(K) → Sln+1(K). As we just saw Sln+1(K) is the zeroes of a polynomial
of degree n + 1 in the variables xij, for i, j = 1, . . . , n + 1, and clearly im Φ is given, in
Sln+1(K) by the relations x1i = xi1 = 0 for i = 2, . . . , n + 1.

3.2.1 Zeroes of analytic functions in affine space
We will now study the more general problem of a subset Z ∈ Kn which is given as the

common zeroes of some collection of analytic functions defined on Kn. The main result is
that in such a set we can always find points around which Z locally looks exactly like an
open set in Km, for some m.

Definition 3.2.1. Let U be an open subset of Kn and denote by O(U) the ring of analytic
functions f : U → K. A subset Z of U is an analytic set if there is a set of analytic
functions {fi}i∈I in O(U) such that Z = {x ∈ U

∣∣ fi(x) = 0, for all i ∈ I}. For an
analytic set Z we define the ideal in O(U) of analytic functions vanishing on Z by

I(Z) = {f : U → K
∣∣ f is analytic and f(x) = 0, for all x ∈ Z}.

Furthermore, at each point x ∈ Z, we define the normal space by

Nx(Z) =

{(
∂f

∂x1

(x),
∂f

∂x2

(x), . . . ,
∂f

∂xn

(x)

) ∣∣∣∣ f ∈ I(Z)

}
.

Remark 3.2.2. It is clear that the normal space Nx(Z) is a linear subspace of Kn whose
dimension may vary over Z. Let Zr be the set of points x ∈ Z where dimK(Nx(Z)) ≤ r.
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Then Zr is given by the points x ∈ Z where all the determinants∣∣∣∣∣∣∣∣

∂fi1

∂xj1
. . .

∂fi1

∂xjr+1... . . . ...
∂fir

∂xj1
. . . ∂fir

∂xjr+1

∣∣∣∣∣∣∣∣
are zero, for i1, i2, . . . , ir+1 ∈ I and j1, j2, . . . , jr+1 ∈ {1, 2, . . . , n}. These determinants are
analytic functions and hence the set Zr is an analytic set. In particular Zr is closed for
all integers r = 0, 1, . . . , n, which implies that dimK Nx(Z) takes its maximal value on an
open subset of Z.

Theorem 3.2.3. Let Z be an analytic subset subset of an open subset of Kn and let x ∈ Z
be a point where dimK Nx(Z) attains its maximal value m. Then there exists a neighborhood
U of x in Kn and an analytic bijection Φ : V → U where V is open in Kn such that

(i) Φ−1 : U → V is analytic.
(ii) Z ∩ U = Φ(V ∩W ), where W is a linear subspace of Kn of dimension n−m.
(iii) If y is another point where dimK Ny(Z) = m, and Ψ : V ′ → U ′ is the corresponding

analytic function, then the function
Ψ−1Φ : Φ−1(U ∩ U ′) → Ψ−1(U ∩ U ′),

is analytic as well as its restriction to W ∩ Φ−1(U ∩ U ′).

Proof: We first prove the theorem for the special case where m = 0. Then we have that
Nx(Z) is zero-dimensional for all points x ∈ Z and it follows that for any analytic function
f in I(Z), we have that ∂f/∂xi(x) = 0, for all i = 1, 2, . . . , n and all x ∈ Z. This means
that the analytic functions ∂f/∂xi, for i = 1, 2, . . . , n, are in I(Z). By induction on |i| we
get that all partial derivatives Dif of f for all i in I are in I(Z). In a neighborhood of each
point x ∈ Z, we can write f as the convergent power series f(x + h) =

∑
i∈I Dif(x)hi,

which is now identically zero. Hence there is a neighborhood of x in Kn contained in Z
which shows that Z is open in Kn. Thus we can take Z = U = V , and W = Kn, and we
have proved the first two assertions of the theorem when m = 0.

Assume that m > 0. We can pick a subset {f1, f2, . . . , fm} of I(Z) such that the vectors
(∂fi/∂x1(x), ∂fi/∂x2(x), . . . , ∂fi/∂xn(x)), for i = 1, 2, . . . ,m, for a basis for Nx(Z).

Let Z ′ be the common zeroes of f1, f2, . . . , fm. Then we have by the Implicit Function
Theorem 3.1.3 applied to the analytic map Ψ : U → Km defined by Ψ(y) = (f(y), . . . , fm(y))
that there is a neighborhood U of x in Kn and a bijective analytic map Φ : V → U with
analytic inverse such that Z ′ ∩ U = Φ(V ∩W ), where V is open in Kn and W ⊆ Kn is a
vector space of dimension n−m.

We have that Z ⊆ Z ′. To prove the first two assertions of the theorem it suffices to
prove that there is a neighborhood U ′ of x contained in U such that Z ∩ U ′ = Z ′ ∩ U ′, or
equivalently that the common zeroes Φ−1(Z∩U ′) of the functions fΦ|V ′∩W : V ′∩W → K
for f in I(Z), with V ′ = Φ−1(U ′), is the same as the common zeroes Φ−1(Z ′∩U ′) = W ∩V ′

of the functions fiΦ|(W ∩ V ′) : W ∩ V ′ → K for i = 1, . . . , m.



64 The geometry of matrix groups

We have that the vector ( ∂f
∂x1

(x), . . . , ∂f
∂xn

(x)) is in the vector space generated by the
vectors ( ∂fi

∂x1
(x), . . . , ∂fi

∂xn
(x)) for i = 1, . . . ,m. However, the functions fiΦ|V ∩W : V ∩W →

K are identically zero. Hence all the partial derivatives ∂fiΦ
∂xj

are zero on V ∩W . It follows
from the case m = 0 that Φ−1(Z ∩ U) is open in W . Since Φ−1(Z ∩ U) ⊆ W ∩ V we can
find an open subset V ′ of V such that W ∩ V ′ = Φ−1(Z ∩ U). Let U ′ = Φ(V ′). Then
Z ∩ U ′ = Z ′ ∩ U ′, and we have proved the two first assertions of the Theorem.

For the third assertion, we note that the composition of analytic functions, as well as
the restriction to linear subspaces of analytic functions are analytic. ¤
Corollary 3.2.4. Let G be one of the groups Gln(K), Sln(K), GS(K) or SGS(K), for a
matrix S. Then, for each A in G there exists an open neighborhood U of A in Mn(K), an
open set V in some affine space Km, depending only on the group, and an injective analytic
map Φ : V → U , whose image is U ∩G.

Moreover, if Ψ : V ′ → U ′ is another such map, then Ψ−1Φ : Φ−1(U ∩U ′) → Ψ−1(U ∩U ′)
is analytic.

Proof: By the theorem, we can find a point B of G, an open neighborhood UB of B in
Mn(K), an open set V in Km, and an analytic map ΦB : V → UB with the properties of
the corollary. For each A in G we saw in Remark 2.4.17 that we have an analytic bijection
λAB−1 : UB → λAB−1(U) which maps B to A. Hence we can take U = λAB−1(U) and
Φ = λAB−1ΦB ¤

Exercises
3.2.1. Determine quadratic polynomials in xij that with common zeroes On(K) in Gln(K) and
Sp4(K) in Gl4(K).

3.2.2. Use Exercise 1.4.6 to find directly maps R1 → SO2(R) that give bijections from open sets
of R1 to some U ∩ SO2(R), where U is open in M2(R).

3.3 Topological spaces
In Proposition 2.3.9 we saw that the groups Gln(K), Sln(K), GS(K), and SGS(K), for

any invertible matrix S, and thus On(K), SOn(K), Spn(K), in a natural way, can be
covered by subsets that are homeomorphic to open subsets in Km, for some m. Like we
used the algebraic properties of these groups to motivate the abstract structure of groups,
rings and fields, we shall use the geometric properties to motivate the geometric structures,
topology, manifold, and algebraic variety.

Definition 3.3.1. A topological space is a set X together with a collection of subsets
U = {Ui}i∈I of X satisfying the following three properties:

(i) The empty set and X are in U .
(ii) If {Ui}i∈J is a collection of sets from U , then the union

⋃
i∈J Ui is a set in U .

(iii) If {Ui}i∈K is a finite collection of sets from U , then the intersection
⋂

i∈K Ui is a set
in U .
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The sets of the form Ui will be called open and their complement X \ Ui will be called
closed.

Let x be a point of X, we call an open subset of X that contains x a neighborhood of x.

Example 3.3.2. In Section 3.2 we have already seen one of the most important topologies
on the space X = Kn. Indeed, the subsets of Kn that are unions of balls, form the open
sets of a topology (see Exercise 2.1.4). We call this topology on Kn, the metric topology
(compare Definition 2.1.10).

Example 3.3.3. Let X and Y be topological spaces given by open subsets {Ui}i∈I respec-
tively {Vj}j∈J . On the Cartesian product the collection of sets consisting of all unions of the
sets in {Ui×Vj}(i,j)∈I×J defines a topology, called the product topology (see Exercise 3.3.4).

Example 3.3.4. The metric topology on the set Kn is the product, n times, of the metric
topology on K.

Definition 3.3.5. Let X and Y be topological spaces. A map Φ : X → Y is continuous if,
for every open subset V of Y , we have that Φ−1(V ) is open in X. We say that a continuous
map is a homeomorphism if it is bijective, and the inverse is also continuous.

Example 3.3.6. We saw in Proposition 2.1.15 that, when K is the real or the complex
numbers, the definition coincides with the usual definition of continuous maps from anal-
ysis.

Example 3.3.7. An analytic map Φ : Kn → Km is continuous in the metric topology.
Indeed, it suffices to show that the inverse image of a polydisc P (a, r) in Km is open in
Kn, that is, there is a polydisc around every point b in the inverse image that is contained
in the inverse image. Let Φ = (Φ1, . . . , Φm). Then Φ−1(P (a, r)) =

⋂m
i=1 Φ−1

i (P (ai, ri)).
Consequently, it suffices to prove that the map is continuous when m = 1. With m = 1
and Φ = Φ1, let b in Kn a point such that Φ(b) = a. It follows from Definition 2.4.11 that
we have Φ(a + x) = Φ(a) + Φ′(a)(x) + r(x), for x in some polydisc P (0, s) in Kn, where
r(x) is analytic in the polydisc, and where limx→0

‖r(x)‖
‖x‖ = 0. Hence, by choosing ‖x‖ small

we can make ‖Φ(a + x)− Φ(a)‖ as small as we like, and Φ is continuous.

Example 3.3.8. Let Φ : [0, 2π) → {z ∈ C : |z| = 1} be the map defined by Φ(x) = eix.
Then Φ is continuous and bijective. However, it is not a homeomorphism because the
image of the open subset [0, π) of [0, 2π) is the upper half circle plus the point (1, 0), which
is not open in the circle. Hence, the inverse map is not continuous.

Definition 3.3.9. Let Y be a subset of a topological space X and {Ui}i∈I the open subsets
of X. Then the sets {Y ∩ Ui}i∈I are the open sets of a topology of Y which we call the
induced topology.

Example 3.3.10. We saw in Corollary 3.2.4 that the matrix groups Gln(K), Sln(K),
GS(K), and SGS(K), for all invertible matrices S considered as subsets of Mn(K), are
covered by sets that are in bijective correspondence, via analytic maps, with balls in affine
spaces. We also saw that these sets can be taken to be the intersection of the group with a
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ball in Mn(K). Consequently, these subsets are open sets in the the topology induced by
the metric topology on Mn(K), and given a point x in one of the groups G and an open
set U of G in the induced topology, then there is an open subset V of U , obtained as in
Corollary 3.2.4, such that x ∈ V ⊆ U .

Exercises
3.3.1. A topological space X is Hausdorff, if, given two points x and y of X, there are open
neighborhoods of x and y that do not intersect. Show that every metric topology is Hausdorff.
3.3.2. Let X = Kn. Show that the two metrics, associated by Definition 2.1.10 to the norms of
Definition 2.1.6 and Example 2.1.7, define the same topology on X.
3.3.3. Let X be a set. Show that the family of all finite subsets of X, together with X itself and
the empty set, are the closed sets of a topology. We call this topology the finite topology. Show
that the finite topology is not Hausdorff.
3.3.4. Let X and Y be topological spaces given by open subsets {Ui}i∈I respectively {Vj}j∈J .
Show that the collection of sets consisting of all unions of the sets in {Ui × Vj}(i,j)∈I×J defines a
topology on the Cartesian product.
3.3.5. Let X = Z and for a ∈ Z \ {0} and b ∈ Z define Xa,b = {ax + b

∣∣ x ∈ Z}. Let U consist of
all unions of sets of the form Xa,b.

(a) Show that U is a topology on X.
(b) Show that all the sets Xa,b, for a, b ∈ Z, are both open and closed.
(c) Let P ⊆ Z be the set of prime numbers. Show that

⋃
p∈P Xp,0 = X \ {1,−1}.

(d) Show that {−1, 1} is not open, and that this implies that P is infinite.
3.3.6. Let R be a commutative ring. An ideal P in R is a prime ideal if ab ∈ P implies that
a ∈ P or b ∈ P . Let

Spec(R) = {P ⊆ R
∣∣ P is a prime ideal}.

For any ideal I in R, let V(I) = {P ∈ Spec(R)
∣∣ I ⊆ P}.

(a) Show that the sets Spec(R) \ V(I) form the open sets of a topology on Spec(R).
(b) Show that a one point set {P} in Spec(R) is closed if and only if P is a maximal ideal,

that is an ideal that is not contained in any other ideal different from R.
3.3.7. For every ideal I in the polynomial ring K[x1, . . . , xn] in n variables x1, . . . , xn with
coefficients in an arbitrary field K we write V(I) = {(a1, . . . , an) ∈ Kn

∣∣ f(a1, . . . , an) =
0 for all f in I}.

(a) Show that the sets Kn \ V(I) for all ideals I form the open sets of a topology on Kn.
(b) Show that when K has a finite number of elements all subsets of K are open and closed.
(c) Show that when K is infinite any two open sets intersect. In particular, the space Kn is

not Hausdorff.

3.4 Manifolds
In Remark 2.4.17 we summarized certain properties of the matrix groups under the

term manifold. The same properties that we used were also stated in Corollary 3.2.4. In
this section we introduce manifolds and show how Remark 2.4.17 and Corollary 3.2.4 are
reinterpreted in the language of manifolds.
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Definition 3.4.1. Let X be a topological space. A chart of X of dimension n consists of an
open set U of X, an open subset V in Kn with the metric topology, and a homeomorphism
Φ : V → U . A family of charts {(Φi, Vi, Ui)}i∈I is called an atlas if the open sets {Ui}i∈I

cover X and if the map Φ−1
j Φi : Φ−1

i (Ui ∩ Uj) → Φ−1
j (Ui ∩ Uj) is analytic for all i and j in

I, when Ui ∩ Uj is non-empty. Here, and in the following, we write, for simplicity, Φ−1
j Φi

for the map
Φ−1

j |(Ui∩Uj)Φi|Φ−1
i (Ui∩Uj)

.

The set where Φ−1
j Φi is defined will be clear from the context.

A topological space M together with an atlas of equal-dimensional charts is called an
analytic manifold. It is often convenient to include in the atlas all the homeomorphisms
Φ : V → U , from an open subset in Kn to an open subset in X, such that, for all x ∈ U
and some Ui in the chart that contains x, we have that Φ−1

i Φ is analytic on Φ−1(U ∩ Ui)
and Φ−1Φi is analytic on Φ−1

i (U ∩Ui). Clearly the maps Φ−1
j Φ and Φ−1Φj are then analytic

on Φ−1(U ∩ Uj) respectively on Φ−1
j (U ∩ Uj) for all j in I such that U ∩ Uj is non-empty.

Such a maximal chart is called an analytic structure.
For each open subset U of M the charts Φi : Φ−1

i (U ∩Ui) → U ∩Ui define a structure as
manifold on U , called the induced structure.

3.4.2. The number n that appear in the definition of a manifold is uniquely determined
by the analytic structure, in the sense that if Φ : U → M is a homeomorphism from an
open set in Km to an open subset of M , such that for all x in U and some member Ui

of a chart that contains x, we have that Φ−1
i Φ and Φ−1Φi are analytic on Φ−1(U ∩ Ui),

respectively on Φ−1
i (U ∩ Ui) then m = n. Indeed, it follows from Equation 2.4.14.1 that

Im = ((Φ−1Φi)(Φ
−1
i Φ))′ = (Φ−1Φi)

′(Φ−1
i (x))(Φ−1

i Φ)′(Φ−1(x)). Hence we have that m ≤ n
(see Exercise 3.4.1). A similar reasoning shows that m ≥ n. Hence the linear maps
(ΦΦi)

′(Φ−1
i (x)) and (Φ−1

i Φ)′(Φ−1(x)) are both invertible and we have that m = n.

Definition 3.4.3. The number n that appear in Definition 3.4.1 is called the dimension
of M and denoted by dim M .

Example 3.4.4. The space Kn is a manifold. A chart is Kn itself with the identity map.

Example 3.4.5. Clearly Corollary 3.2.4 states that the topological spaces Gln(K), Sln(K),
GS(K), and SGS(K) are analytic manifolds. In particular, we have that On(K), SOn(K),
Spn(K) are analytic manifolds.

Example 3.4.6. The homeomorphism R2 → C mapping (a, b) to a+bi defines a structure
on C as a real manifold of dimension 2. Similarly the homeomorphism R4 → H mapping
(a, b, c, d) to a + ib + jc + kd (see Example 1.3.13) defines a structure of a real manifold of
dimension 4 on the quaternions H.

Example 3.4.7. Let M and N be manifolds defined by charts {(Φi, Ui)}i∈I respectively
{(Ψj, Vj)}j∈J . We give the Cartesian product M×N product topology (see Example 3.3.3).
The maps Φi × Ψj : Ui × Vj → M × N clearly are homeomorphisms of topological spaces.
Moreover, these maps define a chart on M × N because if Φ × Ψ : U × V → M × N is
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another one of these homeomorphisms, then the map (Φi × Ψj)(Φ × Ψ)−1 on (Ui × Vj) ∩
(Φi × Ψj)

−1((Φ × Ψ)(U × V ) = (U ∩ Φ−1
i Φ(U) × (Vj ∩ Ψ−1

j Ψ(V )) is given by the analytic
map ΦiΦ

−1 × ΨjΨ
−1. In this way M × N becomes a manifold which we call the product

manifold.
Definition 3.4.8. Let M be an analytic manifold and U an open subset. A function
f : U → K is analytic if for every x in U and some chart Φi : Vi → Ui, where x is contained
in Ui, we have that the map fΦi is analytic on Φ−1

i (U ∩ Ui). The condition then holds for
all charts Φj : Vj → Uj. We denote by OM(U) the set of all analytic functions on U .
Remark 3.4.9. The set OM(U) is clearly a ring, and for an open subset V of M contained
in U there is a natural ring homomorphism ρU,V : OM(U) → OM(V ) sending a function f
to its restriction f |V . The following two fundamental properties hold:

(i) If f ∈ OM(U) and there is an open cover {Ui}i∈I of U such that ρU,Ui
(f) = 0, for

all i ∈ I, we have that f = 0.
(ii) If {Ui}i∈I is an open covering of U and {fi}i∈I is a collection of functions fi ∈

OM(Ui) such that ρUi,Ui∩Uj
(fi) = ρUj ,Ui∩Uj

(fj), for all i and j, there is a function
f ∈ OM(U) such that ρU,Ui

(f) = fi, for all i ∈ I.
We summarize these properties by saying that OM is a sheaf on M .
Definition 3.4.10. Let N and M be analytic manifolds and Φ : N → M a continuous
map. We say that Φ is analytic if, for every open subset U of M and every analytic
functionf : U → K on U , we have that fΦ is analytic on Φ−1(U). When Φ has an analytic
inverse, we say that Φ is an isomorphism of manifolds.
Remark 3.4.11. It follows immediately from the definition that if Ψ : P → N is another
analytic map of manifolds, then the composite ΨΦ : P → M is also analytic.

Let X be a topological space and U an open subset. We denote by CX(U) the ring of
all continuous functions U → K. A continuous map Φ : N → M of topological spaces
induces, for all open subsets U of M , a ring homomorphism CM(U) → CN(f−1(U)), which
sends a function f : U → K to the composite fΦ : Φ−1(U) → K. When M and N are
analytic manifolds, the map fΦ is analytic, by definition, if and only if it induces a map
Φ∗(U) : OM(U) → ON(Φ−1(U)) on the subrings of analytic functions. Clearly Φ∗(U) is a
ring homomorphism and, when V is an open subset of U we have that the diagram

OM(U)
Φ∗(U)−−−→ ON(Φ−1(U))

ρU,V

y
yρΦ−1(U),Φ−1(V )

OM(V )
Φ∗(V )−−−→ ON(Φ−1(V ))

(3.4.11.1)

is commutative.
Remark 3.4.12. When M and N are open subsets of Km respectively Kn, with the induced
manifold structures, we have that a map Φ : N → M is an analytic map of manifolds
if and only if it is an analytic map from an open subset of Km to Kn, in the sense
of Definition 2.4.6. Indeed, the two notions clearly coincide when M = K, and since
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composition of analytic functions in the sense of Definition 2.4.6 is again analytic in the
same sense, we have that if a function is analytic as in Definition 2.4.6, it is an analytic map
of manifolds. Conversely, write Φ = (Φ1, . . . , Φm) where Φi : N → Km are analytic maps.
The coordinate functions xi : M → K defined by xi(a1, . . . , am) = ai are clearly analytic
according to both definitions. Hence xiΦ = Φi is analytic, for i = 1, . . . , m. Consequently
Φ is analytic in the sense of Definition 2.4.6.

Example 3.4.13. It follows from Corollary 3.2.4 that the inclusion map into Mn(K) of
the matrix groups Gln(K), Sln(K), GS(K), and SGS(K). In particular On(K), SOn(K),
Spn(K) are analytic manifolds.

Example 3.4.14. The group homomorphisms of Examples 1.2.10, 1.2.11, and 1.2.12 are
all analytic.

Example 3.4.15. Let M and N be manifolds. Then the maps π1 : M × N → M and
π2 : M ×N → N , from the product manifold to the factors are analytic maps. We call π1

and π2 the projection to the first, respectively second, factor.

Exercises
3.4.1. Show that if A is an m × n-matrix and B is an n ×m-matrix such that AB = Im, then
m ≤ n.

3.5 Equivalence relations and applications
Equivalence relations are fundamental in all parts of mathematics. Here we shall define

equivalence relations and give some important examples. The reason that we introduce
the material at this point is that it is used to define the ring of germs of analytic functions
at a point, which is very convenient for the treatment of tangent spaces of analytic sets.

Definition 3.5.1. A partition of a set S is a family of disjoint subsets {Si}i∈I of S that
cover S. That is

Si ∩ Sj = ∅, if i 6= j

and
S =

⋃
i∈I

Si.

A relation on the set S is a subset T of S×S. If (x, y) is in T we write x ≡ y and say that
x and y are related. We say that the relation ≡ is an equivalence relation if the following
three properties hold, for all x, y and z in S:

(i) (reflexivity) x ≡ x,
(ii) (symmetry) if x ≡ y, then y ≡ x,
(iii) (transitivity) if x ≡ y and y ≡ z, then x ≡ z.

Given a partition {Si}i∈I of a set S, we obtain an equivalence relation on S by defining
x to be related to y if x and y lie in the same subset Si for some i. Conversely, given an
equivalence relation ≡ on a set S we obtain a partition {Si}i∈I of S as follows:
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For each x in S let Sx = {y ∈ S : y ≡ x} be the set of all elements in S related to x.
Then we have that x ∈ Sx, and Sx = Sy if and only if x ≡ y. Let I = S/ ≡ be the set
whose elements are the different sets Sx. For x in S we write [x] for the element of S/ ≡
corresponding to the set Sx. Then [x] = [y] if and only if x ≡ y, and each i in S/ ≡ is of
the form [x] for some x in S. For i in S/ ≡ we let Si be the set Sx for any x such that
i = [x].

Given a multiplication on S, that is, a map
S × S → S,

and denote by xy the image of (x, y) by this map. If, for all elements x, y and z of S such
that x ≡ y, we have that xz ≡ yz and zx ≡ zy, we obtain a multiplication

(S/ ≡)× (S/ ≡) → S/ ≡,

defined by [x][y] = [xy]. Indeed, if [x] = [x′] and [y] = [y′], we have that xy ≡ x′y ≡ x′y′,
and consequently that [xy] = [x′y′].
Example 3.5.2. Let G be a group and H a subgroup. Define a relation on G by a ≡ b if
ab−1 ∈ H. This is an equivalence relation. Indeed, it is reflexive because aa−1 = e ∈ H,
symmetric because, if ab−1 ∈ H, then ba−1 = (ab−1)−1 ∈ H, and transitive because if
ab−1 ∈ H and bc−1 ∈ H, then ac−1 = ab−1(bc−1) ∈ H. We write G/H = G/ ≡. If H is
a normal subgroup of G, we have that G/H has a multiplication. Indeed, if a ≡ b, then
ca ≡ cb and ac ≡ bc, because ca(cb)−1 = cab−1c−1 ∈ H and ac(bc)−1 = ab−1 ∈ H. It is
easily checked that, with this multiplication, G/H is a group with unit [e]. Moreover, the
canonical map

G → G/H,

that sends a to [a] is a group homomorphism with kernel H. We call the group G/H the
residue group of G with respect to H (see Exercise 3.5.4).

Let R be a commutative ring and I ⊆ R an ideal (see Definition 1.3.1). Let R/I be the
residue group. The multiplication on R induces a multiplication

R/I ×R/I → R/I

on R/I, which sends ([a], [b]) to [ab]. With this multiplication R/I becomes a ring, and
the map

R → R/I

is a ring homomorphism with kernel I. We call R/I the residue ring of R with respect to
I (see Exercise 3.5.5).

The best known case of a residue ring is the residue ring Z/nZ of Z with respect to the
ideal nZ = {m ∈ Z : n|m} (see Exercises 3.5.1 and 3.5.2).
Example 3.5.3. Let S = Kn+1 \(0). Defining (a0, . . . , an) and (b0, . . . , bn) to be related, if
there is a non-zero element a of K such that ai = abi, for i = 0, . . . , n, we obtain a relation
on S. This relation clearly is an equivalence relation. The set (Kn+1 \ (0))/ ≡ is denoted
Pn(K), and is called the projective space of dimension n over K. We have a canonical map

Φ : Kn+1 \ {0} → Pn(K).
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The sets U in Pn(K) such that Φ−1(U) is open in the metric topology on Kn+1 \ {0},
are the open sets in a topology on Pn(K). By definition, the map Φ is continuous with
respect to this topology and the metric topology on Kn \ {0}.

For i = 0, . . . , n we denote by Hi the subset of Pn(K) consisting of points of the form
[(a0, . . . , ai−1, 0, ai+1, . . . , an)]. Then Hi is closed in the topology of Pn(K). Let Ui =
Pn(K) \Hi. Then the sets Ui, for i = 0, . . . n, form an open covering of Pn(K). Let

Φi : Kn → Pn(K)

be the map defined by Φi(a1, . . . , an) = [(a1, . . . , ai−1, 1, ai, . . . , an)]. Then Φi is a homeo-
morphism of Kn onto the open subset Ui of Pn(K). We have that the map Φ−1

j Φi is defined
on the set Φ−1

i (Ui ∩ Uj) and is given by Φ−1
j Φi(a1, . . . , an) = (a1

aj
, . . . ,

aj−1

aj
,

aj+1

aj
, . . . , an

aj
),

where aj 6= 0 because Φi(a1, . . . , an) is in Ui ∩ Uj. We see that (Ui, Φi), for i = 0, . . . , n
define a chart on Pn(K), which makes Pn(K) into a manifold over K of dimension n.

Example 3.5.4. Let M be a manifold and x a point of M . Let S be the set consisting
of pairs (U, f), where U is an open neighborhood of x and f an analytic function on
U . We give a relation on S by defining (U, f) to be related to (V, g) if there is an open
neighborhood W of x, contained in U ∩ V such that f |W = g|W . Clearly this relation is
an equivalence relation. The residual set S/ ≡ is denoted by OM,x. The elements of OM,x

can be added and multiplied by the rules [(U, f)] + [(V, g)] = [(U ∩ V, (f + g)|U∩V )] and
[(U, f)][(V, g)] = [(U ∩ V, (fg)|U∩V )]. Clearly OM,x becomes a ring with this addition and
multiplication, zero being the element [(M, 0)] and the unity the element [(M, 1)].

For every open neighborhood U of x we obtain a ring homomorphism
OM(U) → OM,x,

sending f to [(U, f)]. The ring OM,x is called the ring of germs of analytic functions
at x. When g is a function which is analytic in a neighborhood U of x we have that
[(U, g)] = [(V, g)] for any neighborhood V of x contained in U . We often write g for the
elements [(U, g)] when there can be no confusion as to whether g is considered in OM(U)
or in OM,x. There is also a ring homomorphism

OM,x → K,

mapping f to f(x). This map is called the augmentation map at x.
Given an analytic map Φ : N → M of analytic manifolds, we have a natural ring homo-

morphism
Φ∗x : OM,Φ(x) → ON,x

defined by Φ∗x[(U, f)] = [(Φ−1(U), fΦ)].
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Exercises
3.5.1. Show that the ring Z/nZ has n elements.

3.5.2. Show that Z/nZ is a field if and only if n is a prime number.

3.5.3. Show that R/I is a field, if and only if I is not contained in any other ideal.

3.5.4. Let H be an invariant subgroup of a group G. Show that the product [a][b] = [ab] is well
defined for all a and b in G/H and that G/H with this product is a group. Also, show that the
map G → G/H that sends a to [a] is a groups homomorphism.

3.5.5. Let R be a commutative ring and I ⊆ R an ideal. Show that the multiplication on R
induces a multiplication

R/I ×R/I → R/I

on R/I, which sends ([a], [b]) to [ab]. Moreover, show that with this multiplication R/I becomes
a ring, and the map

R → R/I

is a ring homomorphism with kernel I.

3.5.6. Let X = R, and for each open set U ∈ X, let OX(U) be the set of all functions f : U → R,
such that for all x ∈ U , there exist two polynomials g and h and a neighborhood V of x in U ,
with the property that for all y ∈ V

f(y) =

{
g(y), if y ≤ x,
h(y) if y ≥ x.

Hence OX(X) consists of all piecewise polynomial functions on X.
(a) Show that OX is a sheaf of rings on X.
(b) Determine the ring of germs OX,x for x ∈ X.
(c) Determine the tangent space Tx(X), that is, the vector space of derivations D : OX,x → R,

with respect to the augmentation map ϕ : OX,x → R, sending f to f(x).
(d) Determine the set of vector fields Z on X, that is, the set of derivations ZU : OX(U) →

OX(U), with respect to the identity map OX(U) → OX(U), that commute with the
restriction maps ρU,V : OX(U) → OX(V ).

(e) Determine the set of left-invariant vector fields on X, if the group operation on X is
addition.

(f) Determine the set of left-invariant vector fields on X \ {0}, if the group operation on
X \ {0} is multiplication.

3.5.7. Let X be a topological space, and let K be a field which is a topological space, for example
C with the metric topology. For every open subset of X we define

OX(U) = {f : U → K
∣∣ f is continuous}.

(a) Show that, with the obvious restriction maps, we have that OX is a sheaf.
(b) Show that if K has the discrete topology, then OX is a sheaf of rings.
(c) Compute the stalks OX,x in the case when K has the discrete topology.

3.5.8. Let S = K×K \ {(0, 0)}. We write (x, y) ≡ (x′, y′) if xy′ = x′y.
(a) Show that ≡ is an equivalence relation on S.
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(b) Define the projective line P1
K to be S/ ≡. Let Φ and Ψ be maps K → P1

K be defined by
Φ(x) = (x, 1) respectively Ψ(x) = (1, x), for all x in K and let U = imΦ and V = imΨ .
Moreover let U be the subsets W of P1

K such that Φ−1(W ) and Ψ−1(W ) are open. Show
that {(U,K, Φ), (V,K, Ψ)} is an atlas on P1

K, which defines P1
K as an analytic manifold.

(c) Show that the ring OP−1
R

of analytic functions on P1
R is isomorphic to the ring of analytic

functions f : R → R such that limx→+∞ f(x) = limx→−∞ f(x).
(d)) Show that P1

R is isomorphic to SO2((R) as an analytic manifold. [(e)]Show that the ring
OP1

C
(P1

C) of analytic functions on P1
C consists entirely of constant functions.

Hint: Use Liouville’s Theorem.

3.6 Tangent spaces
In this section we shall introduce the tangent space of an analytic manifold. We start

by studying the tangent vectors to curves in Kn in order to motivate the definitions.

3.6.1. A curve in Kn is an analytic map γ : U → Kn on a ball U of K (see Definition 2.5.1).
Let c ∈ U . Then the curve passes through y = γ(c). The tangent to the curve at y is the
derivative γ′(c) of γ at c (see Definition 2.4.11). Each vector v of V n

K is the derivative of
the curve γ : K → Kn through y, defined by γ(t) = y + tv.

Let γ : U → Kn be a curve with tangent v = γ′(c) at c. We obtain a linear homomor-
phism

Dv : OKn,y → K

which maps an element [(V, f)] to the derivative (fγ)′(c) at c of the composite map
fγ : U ∩ γ−1(V ) → K. We write Dv(f) = (fγ)′(c). It follows from the Formula 2.4.14.1
that

Dv(f) = f ′(y)γ′(c) =
n∑

i=1

∂f

∂xi

(y)γ′i(c).

In particular, the map Dv depends only on the tangent vector v = γ′(c). Let [(W, g)] be
another element of OKn,y. From the derivation rules for analytic functions in one variable,
applied to fγ|V ∩W and gγ|V ∩W , we obtain that the function Dv is a K-linear map and that

Dv(fg) = f(y)Dvg + g(y)Dvf.

Definition 3.6.2. Let K be any field, and let R and S be K-algebras. Moreover let
ϕ : S → R be a ring homomorphism which is the identity on K. Such a map is called a
K-algebra homomorphism. A linear map

D : S → R

such that
D(ab) = ϕ(a)Db + ϕ(b)Da,

for all elements a and b of S, is called a derivation with respect to ϕ.

3.6.3. With this terminology Dv is a derivation on OKn,y, with respect to the augmentation
map.
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Conversely, given a K-linear map
D : OKn,y → K,

which is a derivation for the augmentation map. There is a unique vector v such that
D = Dv. Indeed, let xi be the coordinate function in OKn,y defined by [(Kn, xi)], where
xi(a1, . . . , an) = ai − yi. Let [(U, f)] be in OKn,y. It follows from Remark 2.4.14 that

f(x) = f(y) +
n∑

i=1

∂f

∂xi

(y)xi(x) +
n∑

i=1

n∑
j=1

xi(x)xj(x)gij(x), for all x in U ,

where the gij are analytic functions on U . Since D is a derivation with respect to the
augmentation map, we obtain that D(1) = D(1 · 1) = 1D(1) + 1D(1), which implies that
D(1) = 0. Moreover, D(xixjgij) = xj(y)gij(y)D(xi)+xi(y)gij(y)D(xj)+xi(y)xj(y)D(gij) =
0. Thus we get that

Df =
n∑

i=1

∂f

∂xi

(y)D(xi) = Dvf,

where v = (D(x1), D(x2), . . . , D(xn)) is the tangent vector of the curve γ : K → Kn,
defined by γ(t) = y + tv.

From the above considerations it is natural to make the following definition:

Definition 3.6.4. Let M be a manifold, and x a point of M . The tangent space Tx(M)
of M at x is the space of derivations OM,x → K, with respect to the augmentation map.

Example 3.6.5. Let y be a point of Kn. Then it follows from Paragraph 3.6.3 that Ty(K
n)

is a vector space of dimension n and a basis is given by the derivations D1, D2, . . . , Dn

defined by
Di(xj) = δij, for 1 ≤ i, j ≤ n,

where x1, x2, . . . , xn are the coordinate functions in OKn,y with respect to the standard
basis of Kn. We sometimes write Di = ∂/∂xi. It will cause no confusion that we write
∂f
∂xi

(x) for the partial derivative of f at x, when we consider ∂
∂xi

as a partial derivative on
Kn, and that we write ∂f

∂xi
when ∂

∂xi
is considered as a tangent OKn,x → K of Kn at x.

Example 3.6.6. Let N be a manifold and U an open subset with the induced topology.
Then clearly U is a manifold and OU,x = OM,x, for all x in U . Hence we have that
Tx(U) = Tx(N).

3.6.7. The advantage of Definition 3.6.4 to that of Section 2.5 is that it is independent of
chaise of charts. On the other hand, the advantage of the considerations of Section 2.5 is
that they give an explicit description of the tangent space as vectors in the space Kn. In
particular, it follows from the above description that Tx(M) is a vector space of dimension
equal to dim M . To be more precise, let Φ : V → M be a chart with V open in Kn and let
U = Φ(V ). Then, for y = Φ−1(x) ∈ V , we have an isomorphism of rings

Φ∗x : OM,x → OV,Φ−1(x),
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(see Example 3.5.4), and consequently an isomorphism
TΦ−1(x)(V ) → Tx(M)

of tangent spaces. We have a basis of Tx(M) consisting of the derivations Di, which are
the images of the derivations ∂/∂xi : OKn,y → K. Hence, for [(W, f)] in OM,x we get that
Di(f) = ∂fΦ/∂xi(y). Note that the basis D1, D2, . . . , Dn depends on the chart (V, Φ).
On the other hand, when we have chosen one chart, it will give a natural basis for the
tangent space in all points of this chart. We often write Di = ∂/∂xi, as mentioned in
Example 3.6.5, when we have specified a chart.

3.6.8. Let Φ : N → M be an analytic map of manifolds. For each x in N we have a ring
homomorphism

Φ∗x : OM,Φ(x) → ON,x,

(see Example 3.5.4). Hence we obtain a map
TxΦ : Tx(N) → TΦ(x)(M),

that sends a derivation D of ON,x, with respect to the augmentation map on ON,x, to the
derivation DΦ∗x of OM,Φ(x), with respect to the augmentation on OM,Φ(x). Clearly, the map
TxΦ is a K-linear map. Moreover, if Ψ : P → N is an analytic map and x is a point of P ,
we have that TΨ(x)ΦTxΨ = Tx(ΦΨ).

Definition 3.6.9. A curve in a manifold M is an analytic map γ : B(a, r) → M , for a ball
in K. The tangent γ′(a) of the curve in γ(a) is the image Taγ(d/dt) of the standard basis
d/dt of Ta(K) = V 1

K by the map Taγ : Ta(K) → Tγ(a)(M).

Remark 3.6.10. It follows from Paragraph 3.6.8 that, given a chart Φ : U → M such that
γ(a) ∈ Φ(U), and Φ−1γ(t) = (γ1(t), . . . , γn(t)) for t in a neighborhood of a, then

TΦ−1(γ(a))Φ(γ′1(a), . . . , γ′n(a)) = γ′(a).

Consequently, the definition of the tangent to a curve of a manifold corresponds, via a
chart, to the tangent to the corresponding curve of Kn, as given in Paragraph 3.6.1 and
Definition 2.5.1.

Definition 3.6.11. Let M and N be manifolds, where N is a subset of M . We say that
N is a submanifold of M if the inclusion map of N in M is analytic and if the resulting
map TxN → TxM of Paragraph 3.6.8 is injective, for all x in N .

Example 3.6.12. It follows from Example 3.4.13 and Proposition 2.5.4 that the groups
Gln(K), Sln(K), GS(K), and SGS(K), and thus On(K), SOn(K), Spn(K) are submanifolds
of Mn(K).

Example 3.6.13. Let M and N be manifolds. Then M × N with the product topology
is a manifold (see Example 3.4.7). For each point y in N we have a closed subset M ×{y}
of M × N , and we have an isomorphism Φy : M → M × {y} of metric spaces that maps
a point x of M to (x, y). This map defines a structure of manifold on M × {y}, and it is
clear that, with this structure, we have that the inclusion of M ×{y} in M×N is analytic.
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The inclusion Φy induces a map TxΦy : TxM → T(x,y)(M ×N). Moreover, the composite
map of Φy with the projection π1 : M ×N → M onto the second factor is the identity on
M . The map T(x,y)π1 is therefore the inverse map to TxΦy. Let Ψx : N → M × N be the
map defined by Ψx(y) = (x, y) for all y in N . We obtain a map:

TxΦy × TyΨx : TxM ⊕ TyN → T(x,y)(M ×N),

from the direct sum of the spaces TxM and TyN (see Example 1.6.4) and a reverse map:
T(x,y)π1 × T(x,y)π2 : T(x,y)(M ×N) → TxM ⊕ TyN,

which sends (D, D′) to T(x,y)π1(D)+T(x,y)π2(D
′). It is clear that the two maps are inverses

to each other. Consequently, there is a canonical isomorphism
T(x,y)(M ×N)

∼−→ TxM ⊕ TyN

of vector spaces.
Example 3.6.14. Let N be the subset {(a2, a3) : a ∈ K} of K2, and let N have the
topology induced by the metric topology on K2. The map f : K → N defined by f(a) =
(a2, a3) defines a chart, and atlas on N . Hence N is a manifold. The inclusion map i is
clearly analytic. However, N is not a submanifold of K2, because the map on tangent
spaces Tafi : Ta(K) → T(a2,a3)(K

2), maps the basis vector D to the vector (2aD1, 3a
2D2),

where {D}, {D1, D2} are the bases on the tangent spaces corresponding to the standard
bases on K and K2. However, this map is zero at a = 0.
Lemma 3.6.15. Let M and N be manifolds of dimensions m and n. Suppose that N ⊆ M
and that the inclusion map is analytic. Then N is a submanifold of M if and only if around
each point x of N , there is a chart Φ : U → M such that Φ−1(N) is the intersection of U
by a linear subspace W ∈ Km of dimension n and Φ|W : W ∩ U → N is a chart of N .

Proof: It is clear that, if the condition of the lemma holds, then the map of tangent spaces
is injective, indeed, up to isomorphisms, the tangent map is equal to the inclusion map of
W into Km.

Conversely, assume that N is a submanifold of M . Fix x in N and choose charts
ψ : V → N and ϕ : U → M , such that V ⊆ U . It follows from Paragraph 3.6.7 that
we have isomorphisms Tψ−1(x)V → TxN and Tφ−1(x)U → TxM . Consequently the map
ϕ−1ψ : V → U gives an injective map Tψ−1(x)V → Tϕ(x)U . The latter map is the same as
(ϕ−1ψ)′(x). It follows from Theorem 3.1.2 that the condition of the lemma holds. ¤
Proposition 3.6.16. Let N be a submanifold of M , then N is locally closed in M , that
is, for each x in N there is a neighborhood U of x in M such that N ∩ U is closed in M .

Proof: Since a linear subspace W of Km is closed in Km, it follows from Lemma 3.6.15
that N is locally closed in M . ¤
Proposition 3.6.17. Let N be a submanifold of M , then the map OM,x → ON,x is sur-
jective, for all points x in N .
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Proof: Let x be a point of N . Since N is a submanifold of M , it follows from Lemma 3.6.15
that we can find a chart Φ : U → M around x such that Φ−1(N) ∩ U is the intersection of
a linear space W with U and such that Φ|W is a chart for N around x. Thus it suffices
to show that any analytic function f defined on W ∩ U can be extended to an analytic
function on all of U . This can be done by composing f with some linear projection of Km

onto W that maps U to W ∩ U . It suffices to find a projection mapping V to V ∩W for
some neighborhood V of x contained in U . Hence we may assume that Φ−1(x) = 0 in Km,
and that U is a ball with center 0. Then it is clear how to find the linear projections. Since
all linear maps are analytic, this composition will be analytic on U . ¤

3.7 The tangent spaces of zeroes of analytic functions
We shall, in this section, give an easy method to compute the tangent spaces of subsets

of Kn defined as the zeroes of analytic functions, and use the method to compute the
tangent spaces of the matrix groups.

Let Z be the set contained in an open subset U of Kn which is the common zeroes of
analytic functions {fi}i∈I on U . When Z is a submanifold of U we know that in each point
x of Z, there is an injective map TxZ → TxU . We want to describe the linear space TxZ
as a subspace of TxU .

Let D : OKn,x → K be an element of TxU which is also an element of TxZ. For any
element f in I(Z) we have that f is mapped to zero by the map OU,z → OZ,x and we must
consequently have that Df = 0. Thus we get

TxZ ⊆ {D ∈ TxU
∣∣ Df = 0, for all f ∈ I(Z)}. (3.7.0.1)

We know from Example 3.6.5 that TxU is the set of derivations
∑n

i=1 ai∂/∂xi, where
a1, a2, . . . , an ∈ K. Thus the set {D ∈ TxU

∣∣ Df = 0, for all f ∈ I(Z)} can be written
as {

n∑
i=1

ai
∂

∂xi

∣∣∣∣
n∑

i=1

ai
∂f

∂xi

= 0, for all f ∈ I(Z)

}
,

which we can also describe as Nx(Z)⊥. On the other hand, we know from Theorem 3.2.3
that the dimension of Z is n − dimK Nx(Z). Thus it follows from Lemma 1.7.4 that
dimK Tx(Z) = dimK Nx(Z)⊥, which proves that

TxZ = {D ∈ TxU
∣∣ Df = 0 for all f ∈ I(Z)}. (3.7.0.2)

We note that if V is a neighborhood of x contained in U then Nx(Z) ⊆ Nx(Z ∩U), and it
follows from the equality Tx(Z) = Nx(Z)⊥ = Nx(Z ∩ U)⊥ that Nx(Z) = Nx(Z ∩ U).

3.7.1 The epsilon calculus
The observation that the tangent space of an analytic set N , defined as the zeroes of

analytic functions, depends on the the linear terms of the analytic functions only, can be
conveniently expressed by the, so called, epsilon calculus. This calculus disregards, in a
natural way, all terms of degree higher than 1. To explain the calculus we notice that the
ring of dual numbers K[ε] of K (see Example 1.3.15) is isomorphic, as a vector space, to
K2 and thus has a norm, which makes it possible for us to talk about analytic functions
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f : U → K[ε] defined on open subsets U of K[ε]n. Let f : U → K be an analytic function
defined in a neighborhood U of a point x ∈ Kn. Then we can extend f to an analytic
function f̄ : V → K[ε], where V is open in K[ε]n, by using the same power series. In
fact, assume that f is given by f(x + h) =

∑
i∈I cih

i, for small h. Then we define f̄ by
f̄(x + h1 + h2ε) =

∑
i∈I ci(h1 + h2ε)

i. Since we have that (h1 + h2ε)
i = hi

1 +
∑

|j|=1 hi−j
1 hj

2ε
is a sum with n + 1 terms for each i, we can change the order of summation to get

f̄(x + h1 + h2ε) =
∑
i∈I

cih
i
1 + ε

∑

|j|=1

∑
i∈I

(
i

j

)
hi−j

1 hj
2

= f(x + h1) + ε
∑

|j|=1

Djf(x + h1)h
j
2.

Since f̄(x + h1) = f(x + h1) Equality 3.7.0.1 can now be expressed as

Tx(Z) = {v ∈ Kn
∣∣ f̄(x + εv)− f̄(x) = 0, for all f ∈ I(Z)}.

3.7.2 Computation of the tangent spaces
The disadvantage of the description 3.7.0.1 of the tangent spaces is that it requires

knowledge of the ideal I(Z). In most cases we only know a subset of I(Z) such that the
zeroes of the functions in the subset is Z. Often we can find analytic functions fi : U →
K for i = 1, . . . , m such that Z is the common zeroes of f1, . . . , fm and such that the
subspace Nx(f1, . . . , fm) of TxU is generated by the vectors ( ∂fi

∂x1
, . . . ∂fi

∂xn
) for i = 1, . . . , m

has dimension m, or equivalently that the subspace Tx(f1, . . . , fm) = Nx(f1, . . . , fm)⊥ of
TxU has dimension n−m. We then have that

TxZ = Nx(f1, . . . , fm) = {D ∈ TxU
∣∣ Dfi = 0 for i = 1, . . . , m}. (3.7.0.3)

or, with the epsilon calculus as

TxZ = {v ∈ Kn
∣∣ f̄i(x + εv)− f̄i(x) = 0 for i = 1, . . . , m}. (3.7.0.4)

Since Nx(Z) contains Nx(f1, . . . , fm) and consequently Nx(f1, . . . , fm)⊥ is contained in TxZ,
the Equality 3.7.0.3 is equivalent to the equality dimK TxZ = n −m. To prove the latter
equality we consider the analytic map Φ : U → Km defined by Φ(y) = (f1, (y), . . . , fm(y)).
By assumption we have that the rank of Φ′(x) is m. Hence it follows from Theorem 3.1.3
that there is an analytic bijection Ψ : V → Ψ(V ) with an analytic inverse from a neighbor-
hood V of x contained in U to an open subset Ψ(V ) of Km, that maps Z ∩ U bijectively
onto W ∩Ψ(V ), where W is a linear subspace of Km of dimension n−m. We consequently
have an isomorphism Ψ ′(x) : TxV → TΨ(x)(Ψ(V )) that induces an isomorphism between
Tx(Z ∩ V ) and TΨ(x)(W ∩ Ψ(V )). Since W is a linear subspace of dimension n − m we
clearly have that dimK TΨ(x)(W ∩Ψ(V )) = n−m, and we have proved the desired equality
dimK TxZ = dimK Tx(Z ∩ V ) = n−m.

We are now ready to compute the tangent spaces of the matrix groups Gln(K), Sln(K),
On(K), SOn(K) and Spn(K).



The tangent spaces of zeroes of analytic functions 79

Example 3.7.1. The group Sln(K) is the subset of Mn(K) ∼= Kn2 , defined by the polyno-
mial equation f(xij) = det(xij)− 1 = 0. Consider the space of derivations D in TIn Mn(K)
such that Df = 0. By the epsilon calculus this space equals

{A ∈ Mn(K)
∣∣ det(In + εA)− det In = 0}.

A short calculation shows that det(In + εA) = 1 + ε tr A, where tr A is the trace of A, that
is, the sum of the diagonal elements of A (see Exercise 3.7.2). Since the trace is a non-zero
linear equation in the entries of A, the subspace of matrices of trace zero has dimension
n2 − 1. Thus we have that

TIn(Sln(K)) = {(ai,j) ∈ Mn(K)
∣∣ tr A = 0}.

That is, TIn(Sln(K)) consists of all matrices whose trace is equal to zero. In particular we
have that the tangent space, and hence Slm(K) both have dimension n2 − 1 (see Exercise
2.5.4).

Example 3.7.2. The group On(K) is the subset of Mn(K) ∼= Kn2 defined by the n2

polynomials, in n2 variables, that are the coefficients in the matrix tXX − In However,
these polynomials are not independent, since tXX − In is a symmetric matrix. Thus there
are only n(n+1)/2 different entries, fij(X), for 1 ≤ i ≤ j ≤ n. The space of derivations D
in TIn On(K) such that Dfij = 0, for all 1 ≤ i ≤ j ≤ n can by epsilon calculus be written
as

{A ∈ Mn(K)
∣∣ t(In + Aε)(In + Aε)− In = 0}.

We have that t(In + Aε)(In + Aε)− In = (tIn + tAε)(In + Aε)− In = In + tAε + Aε− In =
(tA + A)ε. Consequently, the space we consider is

TIn(On(K)) = {A ∈ Mn(K)
∣∣ tA + A = 0}.

That is, the set of all skew-symmetric matrices. This space has dimension n(n− 1)/2 (see
Exercise 2.5.5). In particular, we have that n(n− 1)/2 + n(n + 1)/2 = n2, and TIn On(K)
is equal to the set of skew-symmetric matrices.

The subspace SOn(K) is defined in Mn(K) by the same equations as On(K) plus the
equation det(xi,j) − 1 = 0. Since at any point of On(K), the determinant is either 1 or
−1 all points in a neighborhood of x in On(K) are in SOn(K), and the new equation will
not contribute to Nx(SOn(K)). Thus the tangent space of SOn(K) is equal to the tangent
space of On(K) at any point of SOn(K).

Example 3.7.3. The symplectic group Spn(K) is the subset of Mn(K) of common zeroes
of the n2 polynomials in n2 variables that are the coefficients in the matrix XStX − S.
These polynomials are not independent, since XStX − S is skew-symmetric and we have,
in fact, only n(n − 1)/2 different equations fij(X), for 1 ≤ i < j ≤ n. We consider the
space of derivations D in TInK

n2 such that Dfij = 0, for all 1 ≤ i < j ≤ n, and obtain by
the epsilon calculus that the space can be written as

{A ∈ Mn(K)
∣∣ t(In + Aε)S(In + Aε) = S}.
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We have that t(In + Aε)S(In + Aε) − S = S + tASε + SAε − S. Consequently, we have
that this space is equal to

{A ∈ Mn(K))
∣∣ tAS + SA = 0}.

However tAS + SA = SA− tAtS = SA− t(SA). Consequently, the isomorphism of vector
spaces Mn(K) → Mn(K), which maps a matrix A to SA (see Exercise 2.5.6), maps this
space isomorphically onto the subspace of Mn(K) consisting of symmetric matrices. In
particular, this space has dimension n(n + 1)/2 = n2 − n(n − 1)/2, which shows that the
tangent space TIn Spn(C) has dimension n(n + 1)/2 (see Exercise 2.5.7).

We shall now indicate another way of computing the tangent spaces in the previous
examples that is closer to the methods we shall use in the algebraic case in Chapter ??.
The treatment will not be self-contained, since we need results from the theory of several
complex variables which it would take too much space to explain and prove here. We refer
to Griffiths–Harris [4] for these results.

First we need some concepts from algebra, which also will be utterly important in the
study of algebraic varieties in Chapter ??.

Definition 3.7.4. A ring R where no non-zero element is a zero-divisor is called an integral
domain or sometimes just domain. In an integral domain, we say that an element f is
irreducible if in any factorization f = gh, either g or h is invertible. An integral domain
R is a unique factorization domain if every non-zero element f can be uniquely – up to
invertible elements – written as a product of irreducible elements.

Example 3.7.5. The integers Z is the standard model of a domain. The irreducible
elements are ±1 and ±p, where p is prime number. It is also a unique factorization
domain, since we have unique prime factorization of all positive integers. An example of a
domain which does not have unique factorization has to be somewhat more complicated;
R = {a + bi

√
5 | a, b ∈ Z} is an example, since 6 have two different factorizations, 2 · 3 and

(1 + i
√

5)(1− i
√

5), into irreducible elements. (It is a domain, since it is a subring of the
complex numbers.)

We will now quote two results from the theory of several complex variables without
proof.

Theorem 3.7.6. The local ring OCn,x of analytic functions defined in neighborhood of a
point x is a unique factorization domain.

Theorem 3.7.7. (Weak Nullstellensatz) If h ∈ OCn,x vanishes on the zeroes of an irre-
ducible function f ∈ OCn,x, then h = fg for some g ∈ OCn,x.

Remark 3.7.8. Observe that this is not true for real analytic functions, since for example
x2 + y2 is an irreducible analytic function defined around the origin in R2, while neither x
nor y is divisible by x2 + y2, though they both vanish at the origin, which is the zero set
of x2 + y2.
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From these two theorems, we can prove the following fundamental theorem for the zeroes
of analytic functions which basically states that the set of zeroes of an analytic function
on Cn cannot have dimension less than n− 1. This is not true for real analytic functions,
as the remark above shows.

Theorem 3.7.9. (Dimension Theorem) Let f : Cn → C be an analytic function and let
Z be the set of zeroes of f . Then we have that

dimC NxZ ≤ 1, for all points x in Z.

Proof: By Theorem 3.7.6 we can write f as a product of irreducible functions f =
f1f2 · · · fm. Since the zero set of a power of an analytic function equals the zero set of
the function itself, we may assume that the functions f1, f2, . . . , fm are distinct and do
not divide each other. Let h be any function in I(Z). Since h vanishes on the zero set
of f1f2 · · · fm, it must vanish on the zero set of each fi. Thus Theorem 3.7.7 says that fi

divides h for i = 1, 2, . . . ,m, but since the fi’s does not divide each other, we conclude
that h = f1f2 · · · fng = fg, for some analytic function g. Now if D ∈ TxC

n is a derivation,
where x ∈ Z, we have that

Dh = f(x)Dg + g(x)Df = g(x)Df.

Thus the vector (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xn) spans NxZ, whose dimension thereby is at
most 1. ¤
Corollary 3.7.10. Let f1, f2, . . . , fm be analytic functions on Cn and let Z be the subset
of Cn where they vanish. Then we have that dimC NxZ ≤ m, for any point x in Z.

Proof: Let Z1 be the zero set of f1. By the theorem we have that dimC NxZ1 ≤ 1, for
x ∈ Z. By Theorem 3.2.3, we can parameterize the Z1 around any point x ∈ Z where
dimC NxZ is maximal, by an open subset of Cn or Cn−1. The analytic functions f2, . . . , fm

define analytic functions on this set and the corollary follows by induction. ¤
If the maximum in the corollary is attained, we say that Z is a complete intersection.

In particular, if we have that
{D ∈ TxC

n
∣∣ Dfi = 0, for i = 1, 2, . . . , m} (3.7.10.1)

has dimension n−m, we get that dimC TxZ ≤ n−m, while by the corollary, dimC NxZ ≤
m. These two inequalities together imply that we have equality, and Z is a complete
intersection. Thus 3.7.10.1 gives an expression for the tangent space TxZ.

We shall now see that the ordinary complex matrix groups are complete intersections in
the affine space of matrices.
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Exercises
3.7.1. Prove that for any integer d, the set Z[

√
d] = {a + b

√
d | a, b ∈ Z} is an integral domain.

3.7.2. Show that det(In + εA) = 1 +
∑n

i=1 Aiiε.

3.8 Connectedness
As we observed in Sections 1.10 and 3.6 we can not yet distinguish On(K) from SOn(K).

There is however, an important topological invariant, connectedness, that distinguishes
On(K) from the other matrix groups.
Definition 3.8.1. Let X be a topological space. An arch in X is a continuous map
γ : [0, 1] → X from the closed unit interval, with the metric topology, to X. We call γ(0)
and γ(1) the beginning, respectively end, of the arch.
Remark 3.8.2. If we have two arches, given by, γ : [0, 1] → X and δ[0, 1] → X such that
γ(1) = δ(0), then the map ε : [0, 1] → X defined by ε(a) = γ(2a), when a ∈ [0, 1

2
], and

ε(a) = δ(2a − 1), when a ∈ [1
2
, 1], gives an arch which begins in γ(0) and ends in δ(1).

Thus the property that x and y can be connected by an arch yields an equivalence relation
on X.
Definition 3.8.3. A topological space X is archwise connected if, for every pair of points
x, y of X, there is an arch which begins in x and ends in y.

The space X is connected if it can not be written as the union of two disjoint non-empty
open sets. That is, there does not exist open sets U and V of X such that X = U ∪V and
U ∩ V = ∅.

A subset Y of X which is connected in the induced topology, and not contained in any
other connected subset is called a connected component.
Remark 3.8.4. The assertion that X is connected can be expressed in many different ways,
like X is not the union of two disjoint non-empty closed sets, the complement of an non-
empty open set can not be open, or, the complement of a non-empty closed set can not
be closed. A connected component Y of X is closed because when Y is connected then
the closure Ȳ of Y , that is, the smallest closed set in X containing Y , is connected (see
Exercise 3.8.6).
Example 3.8.5. The unit interval [0, 1] is connected (see Exercise 3.8.1).
Example 3.8.6. The space Kn is archwise connected in the metric topology. Indeed, any
two points can be joined by a straight line.
Example 3.8.7. When the field K is infinite, the space Kn is connected in the Zariski
topology (see Exercise 3.3.7). On the other hand, when K is finite, all subsets are open,
and Kn is not connected.
Lemma 3.8.8. Let X be a topological space. Then X can be written uniquely as a union
X = {Xi}i∈I , where the Xi are the connected components. We have that Xi ∩ Xj = ∅,
when i 6= j.
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Proof: Let {Yj}j∈J be an ordered set of connected subsets in X, that is Yj ⊆ Yj′ or Yj′ ⊆ Yj

for all j, j′ in J . Then we have that
⋃

j∈J Yj is connected because, if
⋃

j∈J Yj is the union
of two disjoint open sets, the same must be true for at least one of the Yj. Given a point
x in X, and let {Yj}j∈J be the family of all connected subsets of X that contain x. Since
the union of an ordered family of connected sets is connected there must be a maximal set
in the family {Yj}j∈J . Consequently every point is contained in a connected component of
X. Hence we have that X is the union of connected components. Two components can not
intersect, because then the union would be connected. Similarly, we see that a composition
into connected components is unique. ¤
Lemma 3.8.9. An archwise connected topological space is connected.

Proof: Assume that X is archwise connected. If X = U ∪ V , where U and V are
open, non-empty, disjoint sets such that X = U ∪ V we choose points x and y in U
respectively V . There is an arch given by γ : [0, 1] → X, beginning in x and ending
in y. Then [0, 1] is the union of the two non-empty open sets γ−1(U) and γ−1(V ), and
γ−1(U) ∩ γ−1(V ) = γ−1(U ∩ V ) = ∅. However, this is impossible, since [0, 1] is connected
(see Example 3.8.5). Hence X is connected. ¤
Lemma 3.8.10. A connected manifold is archwise connected.

Proof: Let M be a connected manifold. For each point x of M , denote by Ux the set
of points that are the ends of arches in M that begin at x. We have that Ux is open,
because, if y is in Ux, then there is a chart f : B(0, r) → M , from a ball in Km, such that
f(0) = y. Clearly the ball is archwise connected. Consequently we have that f(B(0, r))
is archwise connected, and hence is contained in Ux. Hence Ux is open. Fix x in M . If
Ux is not all of M , then, for every point y in M outside of Ux, the set Uy is disjoint from
Ux by Remark 3.8.2. Consequently the complement of Ux is open, which contradicts the
connectivity of M . We thus have that M = Ux, and hence is archwise connected. ¤
Lemma 3.8.11. Let f : X → Y be a continuous map of topological spaces. If X is con-
nected, then f(X) is connected.

Proof: Assume that Y can be written Y = U ∪V where U and V are non-empty open sets
such that f(X) ∩ f−1(U) and f(X) ∩ f−1(V ) are disjoint. Then X = f−1(U) ∪ f−1(V )
expresses X as a union of disjoint open sets. Since X is connected we must have that
f(X) ⊆ U or f(X) ⊆ V . Consequently f(X) is connected, and we have proved the
lemma. ¤
Proposition 3.8.12. The groups Gln(C), Sln(C) and Sln(R) are connected in the metric
topologies, whereas Gln(R) consists of two connected components.

Proof: It follows from Proposition 1.5.2 that every element A of Gln(K) can be written as
a product of matrices Eij(a) and E(b) with a and b in K, and where E(b) is the matrix
1.5.2.1. Moreover if A is in Sln(K) then b = 1.
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Let K = R. When we replace the matrices Eij(a) in the product with Eij(at) we obtain
an arch γ : [0, 1] → Gln(K) from E(c) to A for some c in K. When A is in Sln(K) we have
that c = 1. Hence E(c) = In, and Sln(K) is connected.

If K = C, we can find an arch γ : [0, 1] → Gln(C) from E(a) to In, since C \ {0} is
connected. Thus Gln(C) is connected. For Gln(R), we can connect E(a) by an arch to
E(−1) or In = E(1), depending on the sign of det A. On the other hand det−1(1) and
det−1(−1) are disjoint open sets of Gln(R) whose union is Gln(R). Thus Gln(R) consists
of two connected components. ¤
Proposition 3.8.13. The group SOn(K) is connected in the metric topology, and On(K)
consists of two connected components.

Proof: We have that det−1(1) ∪ det−1(−1) gives a partition of On(K) into two disjoint
open sets SOn(K) and E(b) SOn(K) where E(b) is the matrix of 1.5.2.1. Hence, when we
have proved that SOn(K) is connected, it will follow that On(K) consists of two connected
components.

It follows from Proposition 1.9.4 that SOn(K) is generated by products of two reflections
of the form sx, where 〈x, x〉 6= 0. Let A =

∏
sxi

syi
be an element of SOn(K). If we can show

that the set {x ∈ V n(K)
∣∣ 〈x, x〉 6= 0} is connected, we can find arches γi : [0, 1] → V n(K)

from xi to yi, for all i. Thus we can define an arch γ : [0, 1] → SOn(K) by γ(t) =
∏

sγi(t)syi
,

which goes from A to In and SOn(K) is connected.
It remains to prove that X = {x ∈ V n(K)

∣∣ 〈x, x〉 6= 0} is connected. For K = R, we
have that X = V n(R) \ {0}, which is connected for n > 1. The case n = 1 is trivial, since
SO1(K) = {1}. For K = C, we can take a complex line tx + (1 − t)y through any two
points x, y ∈ X. On this line, there are at most the two points corresponding to the zeroes
of the equation 〈tx+(1− t)y, tx+(1− t)y〉 = t〈x, x〉+2t(1− t)〈x, y〉+(1− t)2〈y, y〉 = 0 in
t that are not in X. However the complex line minus two points is still connected. Hence
we can find an arch between x and y in X. ¤
Proposition 3.8.14. The group Spn(K) is connected.

Proof: It follows from Proposition 1.9.9 that every element of Spn(K) can be written as
a product of transvections τ(x, a), where τ(x, a)(y) = y − a〈y, x〉x. From Remark 3.8.2
it follows that it suffices to find an arch γ : [0, 1] → Spn(K) such that γ(0) = In and
γ(1) = τ(x, a). However, we can define such an arch by γ(t) = τ(x, ta), for t ∈ [0, 1]. ¤
Example 3.8.15. We collect the information we have about the matrix groups in the
Table 2.

As we observed in Section 1.10 the size of the center alone suffices to distinguish Gln(C)
from the remaining groups. Moreover, for n > 2, the same is true for Sln(C), and when
n is odd, for SOn(C). Hence none of these sets are isomorphic as groups when n is odd
and n > 2. The group On(C) is the only one that is not connected and can not be
homeomorphic, as topological space, to any of the other groups. Finally, for m even,
SOm(C) can not be equal to Spn(C) as a manifold for n even, since then they must have
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Group n Center Dimension Connected

Gln(C) arb. K∗ n2 yes

Sln(C) arb. Z/nZ n2 − 1 yes

On(C) arb. {±1} n(n−1)
2

no

SOn(C) even {±1} n(n−1)
2

yes

SOn(C) odd 1 n(n−1)
2

yes

Spn(C) arb. {±1} n(n+1)
2

yes

Table 2. The classical groups over the complex numbers

the same dimension and then we must have that n(2n+1) = m(2m− 1), for some positive
integers m and n. This implies that 2(m−n) = −1, which is impossible. Consequently we
can distinguish the matrix groups over C. We see that we have used notions from group
theory, topology, and from the theory of manifolds to separate the groups. It is therefore
natural to introduce structures on the classical groups that take both the algebraic and
geometric properties into account. We shall do this in Chapter 4.

In the case when the field K is the real numbers, the center of Sln(R) is also ±In.
In this case we can, as above, distinguish all groups except Sln(R) and Sp2m(R), when
n2 − 1 = 2m(2m+1)

2
, and Sln(R) and SO2m(R), when n2 − 1 = 2m(2m−1)

2
(see Exercise 3.8.3).

The possibility that Sln(R) can be isomorphic to SOn(R) can be ruled out by introduc-
ing compactness, which is a topological invariant. We shall see how this is done in the
Section 3.9.

Exercises
3.8.1. Show that the unit interval [0, 1] is connected.

3.8.2. Let SO2(R, S) be the special orthogonal group with respect to the form S =
(

1 0
0 −1

)
. Show

that SO2(R, S) =
{(

a b
b a

)
: a, b ∈ R, a2 − b2 = 1

}
, and that SO2(R, S) is not connected.

3.8.3. Determine all positive integers m and n such that

n2 − 1 =
2m(2m + 1)

2
.

3.8.4. Prove that X is connected if and only if X is not the union of two disjoint non-empty
closed sets, or, if and only if the complement of an non-empty open set can not be open, or, if
and only if the complement of a non-empty closed set can not be closed.
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3.8.5. For x and y in a topological space X we write x ≡ y if there is an arch in X that begins
in x and ends in y. Show that ≡ is an equivalence relation on X.

3.8.6. Let Y be a subset of a topological space X.
(a) Show that the intersection of all closed subsets of X that contain Y is the smallest closed

subset Ȳ of X that contains Y .
(b) Show that the connected components of X are closed.

3.9 Compact topological spaces
To distinguish the groups Sln(R) and SOn(R) we introduce another topological invariant.

Definition 3.9.1. Let X be a topological space. A subset S of X is compact if, for every
family of open sets {Ui}i∈I that cover S, that is, such that S =

⋃
i∈I Ui, there is a finite

subset Ui1 , . . . , Uin , for some n, that cover S.

Proposition 3.9.2. A subset of Rn is compact if and only if it is closed and bounded.

Proof: Assume that S is compact. First we show that S is bounded. Every point x in
S is contained in a ball B(x, 1) of radius 1. We have that the family

⋃
x∈S B(x, 1) covers

S. Hence, there is a finite subcover B(x1, 1), . . . , B(xn, 1). The union of this finite family
of bounded sets is clearly bounded. Hence S is bounded. We next show that S is closed.
Let y be a point of Rn not in S. For every x ∈ S there are balls B(y, εx) and B(x, εx)
such that B(y, εx) ∩ B(x, εx) = ∅. The sets {B(x, εx)}x∈S cover S. Hence there is a finite
subcover B(x1, εx1), . . . , B(xm, εxm). We have that U =

⋂m
i=1 B(y, εxi

) is an open subset
containing y such that U ∩B(xi, εxi

) = ∅, for i = 1, . . . , m. Consequently U ∩S = ∅. Since
every point of Rn that is not in S has a neighborhood that does not intersect S, we have
that S is closed.

Conversely assume that S is a closed and bounded subset of Rn. Let {Ui}i∈I be an open
covering of S. Assume that S can not be covered by a finite subfamily of this covering. Since
S is bounded we have that S is contained in a box of the form B0 = {x ∈ Rn : |xi| ≤ a

2
} of

side-length a, for some a. Divide B0 into 2n boxes, B11, B12n of side-length a
2
. Since S can

not be covered by a finite number of the Ui the same is true for at least one of the sets,
say B1 = B1j ∩ S. We subdivide B1 into 2n boxes B21, . . . , B22n of side-length a

22 . Since
B1 ∩ S can not be covered by a finite number of the open sets Ui the same is true for at
least one of the, say B2 = B2j2 . We continue this reasoning and obtain a sequence of boxes
B0 ⊃ B1 ⊃ B2 ⊃ · · · , where Bi has side-length a

2i , and such that Bi∩S can not be covered
by a finite number of the Ui.

Let, for j = 1, . . . , m, the j’th side of Bi be [aij, bij]. Then a1j ≤ a2j ≤ · · · ≤ b2j ≤ b1j,
and bij − aij = a

2i . Let bj be the greatest lower bound for the set b1j ≥ b2j ≥ · · · . Then
aij ≤ bj ≤ bij, for all i. Consequently, the point (b1, . . . , bn) is in ∩∞i=1Bi. We have that
b ∈ Ul, for some l in I. Since the side of Bi is a

2i , we can find a j such that Bj ⊆ Ul. In
particular Bj can be covered by a finite number, in fact one, of the sets Ui for i in I. This
contradicts the assumption that Bj can not be covered by a finite number of the Ui, and
we have finished the proof. ¤
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Group n Center Dimension Connected Compact

Gln(R) arb. K∗ n2 no no

Sln(R) arb. {±1} n2 − 1 yes no

On(R) arb. {±1} n(n−1)
2

no yes

SOn(R) even {±1} n(n−1)
2

yes yes

SOn(R) odd {1} n(n−1)
2

yes yes

Spn(R) arb. {±1} n(n+1)
2

yes no

Table 3. The classical groups over the real numbers

Example 3.9.3. The groups Gln(R) and Sln(R) are not compact, for n > 1. Indeed, they
contain the matrices Ei,j(a) for all i 6= j, and consequently are not bounded.
Example 3.9.4. Both of the groups On(R) and SOn(R) are compact. Indeed, they are
defined as the zeroes of the n2 polynomials that are the coefficients of the matrix identity
X tX = 1, and SOn(R) is the zero also of the polynomial det X − 1. Hence the groups are
closed. However, the relations x2

i1 + · · · + x2
in = 1, for i = 1, . . . , n, which are obtained by

considering the diagonal entries of the matrix relation, show that the points of On(R), and
thus those of SOn(R), are contained in the unit cube in Rn.
Example 3.9.5. The group Spn(R) is not compact. Indeed, it contains the element
Ei,n+1−j(a), for all i, and hence is not bounded.
Example 3.9.6. We can now return to the case of matrix groups over the real numbers
as we mentioned in Example 3.8.15. Over the real numbers we get a Table 3.

In this case we can, as above, distinguish all groups except Sln(R) and Sp2m(R), when
n2 − 1 = 2m(2m+1)

2
(see Exercise 3.3.7).

Exercises
3.9.1. Let O2(R, 〈, 〉) be the orthogonal group over the real numbers with respect to the form

defined by the matrix
(

1 0
0 −1

)
. Show that O2(R, 〈, 〉) contains the matrices

(
1
2
(t+ 1

t
) 1

2
(t− 1

t
)

1
2
(t− 1

t
) 1

2
(t+ 1

t
)

)
, and

that O2(R, 〈, 〉) is not compact.

3.9.2. Let H be the set of (n + 2)× (n + 2)-matrices of the form


1 tx c
0 In y
0 0 1


 for x, y ∈ Cn and c ∈ C.
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(a) Show that H is a subgroup of Gln(C).
(b) Determine the tangent space h of H.
(c) Show that the map exp : h → H is a polynomial and globally invertible.
(d) Determine the center of H.
(e) Determine whether H is compact.
(f) Determine whether H is connected.
(g) Find a natural set of generators of H.

3.9.3. Let Bn ⊆ Gln = Gln(C) be the subset of upper triangular matrices


a11 a12 · · · a1n

0 a22 · · · a2n
...

... . . . ...
0 0 · · · ann


 .

(a) Show that Bn is a subgroup of Gln.
(b) Determine the center of Bn.
(c) Determine the tangent space bn of Bn.
(d) Show that the map exp : bn → Bn is surjective.
(e) Show that Bn acts on Gln by left multiplication.
(f) Show that all orbits are homeomorphic to Bn.
(g) Show that Bn is not a normal subgroup of Gln.
(h) Give Fln = Gln /Bn the structure of an analytic manifold and determine the dimension

of its tangent space.
(i) Determine whether Fln is compact.
(j) Determine whether Fln is connected.
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4 Lie groups
We shall in this Chapter join the algebraic point of view of Chapter 1 with the geometric

point of view of Chapter 3, and consider manifolds that have a natural group structure.
In this way we obtain a powerful tool for studying the matrix groups.

4.1 Lie groups
In Chapter 3 we gave a natural geometric framework for the classical groups introduced

in Chapter 1, when the groups have coefficients in the real or complex numbers. We shall
in this chapter join the algebraic point of view of Chapter 1 with the geometric point of
view of Chapter 3. In this way we obtain a natural and powerful tool for studying matrix
groups.

Throughout this chapter the field K will be the real or complex numbers unless we
explicitly state otherwise.
Definition 4.1.1. Let G be a manifold which is also a group and let G×G be the product
manifold (see Example 3.4.7). We say that G is a Lie group when the product map

G×G → G,

which sends (a, b) to ab, and the inverse map
G → G,

which sends a to a−1, are analytic.
Remark 4.1.2. We note that the inverse map is an analytic isomorphism. In fact, it is its
own inverse.
Example 4.1.3. The manifolds Gln(K), Sln(K), GS(K), and SLS(K), and hence, in
particular, On(K), SOn(K), Spn(K) are all Lie groups (see Example 3.4.5). Indeed the
multiplication map is given by polynomials, and the inverse is given by a rational function
with denominator the determinant det(Xij) of a n×n matrix with variables as coefficients.
Example 4.1.4. The manifold K with addition as group operation is a Lie group.
Example 4.1.5. Let H be a Lie group, and G a submanifold of H, which is also a subgroup
of H. Then G is also a Lie group. Indeed, the multiplication map G × G → G and the
inverse map G → G of G are the composite of the inclusions G×G ⊆ H ×H and G ⊆ H,
with the multiplication, respectively inverse, on H. Since the inclusion maps are analytic,
by the definition of submanifolds, the multiplication and inverse on G are analytic.
Definition 4.1.6. Let G and H be Lie groups. We say that G is a Lie subgroup of H if it
is a submanifold, and the inclusion map is also a group homomorphism.

The most remarkable feature of a Lie group is that the structure is the same in the
neighborhood of each of its points. To make this precise we introduce the left translations.
Definition 4.1.7. Let G be a group and a an element of G. The map

λa : G → G

defined by λa(b) = ab is called a left translation by a.
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Remark 4.1.8. When G is a Lie group the left translations are analytic. Indeed λa is the
composite of the inclusion a×G → G×G with the multiplication G×G → G, and both the
latter maps are analytic. The map λa is also an isomorphism of the manifold G, because
it has the analytic inverse λa−1 .

let a and b be points of a Lie group G. Then the map λba−1 is an isomorphism of the
manifold G, which sends a to b. We obtain, for each open set U of G, an isomorphism of
rings

(λ∗ba−1
)U : OG(λba−1(U)) → OG(U)

which sends an analytic function f : λba−1(U) → K to the function fλba−1 : U → K, which
sends c to f(ba−1c). In particular, we obtain an isomorphism

(λba−1)b : OG,b → OG,a

of rings. Consequently, we have an isomorphism of vector spaces
Taλba−1 : TaG → TbG,

sending a derivation D in TaG to the derivation in TbG which maps a function f of OG,b

to D(fλba−1).

Definition 4.1.9. Let G and H be Lie groups. A homomorphism of Lie groups is a map
Φ : G → H which is an analytic map of manifolds and a homomorphism of groups. We say
that a homomorphism of Lie groups is an isomorphism if it has an inverse map, which is
a homomorphism of Lie groups.

Example 4.1.10. The maps of Examples 1.2.10, 1.2.11, 1.2.12, and the inclusion in
Gln(K), of all the groups Sln(K), GS(K), and SGS(K) are all homomorphisms of Lie
groups. In particular, On(K), SOn(K), Spn(K) are all Lie groups.

Remark 4.1.11. Let a and b be two points of a Lie group G. Then we have that λab = λaλb.
Moreover, given a map Φ : G → H of Lie groups. For each point a of G we have that
Φλa = λΦ(a)Φ, i.e., the diagram

G
λa−−−→ G

Φ

y
yΦ

H −−−→
λΦ(a)

H

(4.1.11.1)

is commutative.

4.2 Lie algebras
We noticed in Example 2.6.2 that the tangent spaces of the matrix groups Gln(K),

Sln(K), GS(K), and SGS(K), and in particular On(K), SOn(K), Spn(K) are Lie subalge-
bras of Mn(K) in the sense defined in Remark 2.6.1. In this section we give the general
Definition of Lie algebras and in section 4.4 we show that the tangent space of any Lie
group has a natural structure as a Lie algebra.
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Definition 4.2.1. Let v be a vector space with a bilinear form
[ , ] : v× v → v

that we sometimes call the product on v (see 1.7.1). We say that v is a Lie algebra if the
following two conditions hold for all vectors X, Y and Z of v:

(i) [X, X] = 0,
(ii) [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z, X]] = 0.
A subalgebra v of a Lie algebra w is a subspace such that [X, Y ] is in v, for all X and

Y of v.

Remark 4.2.2. Let v be a Lie subalgebra of w. Then the product [, ] on w induces, by
definition, a product [, ] on v. With this product we have that v is a Lie algebra. Indeed,
this product is bilinear and satisfies the two properties of the definition 4.2.1 of Lie algebras
because it does so for all elements of w.

Example 4.2.3. The spaces gln(K), sln(K), son(K), and spn(K) of Example 2.6.2 are all
Lie subalgebras of the Lie algebra gln(K) of Remark 2.6.1.

Example 4.2.4. Let A be an algebra over K, and denote by DerK(A,A) the vector space of
K derivation on A (see Definition 3.6.2). Given derivations X and Y , we let [X,Y ] denote
the map (XY −Y X) : A → A. We have that [X,Y ] is, in fact, a K derivation. Indeed, for
all a and b in A, we have that XY (ab)−Y X(ab) = X(aY b+bY a)−Y (aXb+bXa) = XaY b+
aXY b+XbY a+bXY a−Y aXb−aY Xb−Y bXa−bY Xa = (a(XY −Y X)b+b(XY −Y X)a).
With this product DerK(A,A) becomes a Lie algebra. Indeed the first axiom is obvious,
and the second a long, but easy, calculation (see Exercise 4.2.1).

Definition 4.2.5. Let g and h be Lie algebras and ϕ : g → h a linear map. We say that ϕ
is a Lie algebra homomorphism if ϕ[X,Y ] = [ϕX,ϕY ], for all X and Y of g. A Lie algebra
isomorphism is a homomorphism which is an isomorphism of vector spaces.

Exercises
4.2.1. Let K be an arbitrary field. Show that DerK(A,A) with the product [X, Y ] = XY − Y X
is a Lie algebra.

4.3 Vector fields
In order to define a structure of Lie algebra on the tangent space of a Lie group we shall

introduce vector fields on manifolds. Intuitively a vector field on a manifold M consists of
a tangent vector X(x) for every point x of M , such that the vectors depend analytically
on the points. More precisely, for every analytic function f : U → K defined on an open
set U , the function on U sending x to X(x)f should be analytic.

Definition 4.3.1. A vector field on a manifold M consists of a derivation
XU : OM(U) → OM(U),
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on the ring OM(U), for all open subsets U of M , such that, if V is an open subset of U ,
then

ρU,V XU = XV ρU,V ,

where the ρU,V are the restriction maps of Remark 3.4.9.

Remark 4.3.2. A collection of maps ϕU : OM(U) → OM(U), one for each open subset U of
M , such that ρU,V ϕU = ϕV ρU,V , for all open subsets V of U , is called a map of the sheaf
OM .

4.3.3. Let X and Y be vector fields on a manifold M . We define the sum X + Y of X
and Y by (X + Y )U = XU + YU , and the product aX of a scalar a of K with X by
(aX)U = aXU , for all open sets U of M . It is clear that the vector fields v(M) on M , with
these operations, become a vector space over K.

4.3.4. Fix a point x of M , and let X be a vector field on M . The maps XU : OM(U) →
OM(U), for all open subsets U of M that contain x, define a K derivation

Xx : OM,x → OM,x

on the ring OM,x. The composite of Xx with the augmentation map OM,x → K is a K
derivation

X(x) : OM,x → K,

for the augmentation map. By the definition of X(x) we have that
X(x)f = (Xf)(x),

for all functions f that are analytic in a neighborhood of x. We consequently obtain, for
each point x in M , a map

εM,x : v(M) → TxM,

from vector fields v(M) on M to the tangent space TxM of M at x, which maps a vector
field X to the derivation whose value at an analytic function f , defined in a neighborhood
of x is (Xf)(x) is a K linear map.

4.3.5. let X and Y be vector fields on a manifold M . For all open subsets U of M the
composite (XY )U = XUYU of XU and YU defines a linear map OM(U) → OM(U), such that
ρU,V (XY )U = (XY )V ρU,V , for all open subsets V of U such that V is contained in U . That
is, we obtain a map XY of sheaves. This map is however, not a derivation. On the other
hand the map (XY −Y X)U : OM(U) → OM(U) is a derivation. Indeed, we saw in Example
4.2.4 that DerK(OM(U),OM(U)) is a Lie algebra under the operation [A,B] = AB −BA,
and XU and YU lie in DerK(OM(U),OM(U)). Hence, the maps (XY − Y X)U , for all open
sets U of M , define a vector field. We shall denote this vector field by [X,Y ]. Since the
subset of DerK(OM(U),OM(U)) consisting of derivations of the form XU , where X is a
vector field on M , form a Lie subalgebra, it follows that the space of vector fields on M is
a Lie algebra with product [ , ].

Definition 4.3.6. We denote the Lie algebra of vector fields on a manifold M by v(M).
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Remark 4.3.7. Let Φ : M → N be a homomorphism of analytic manifolds. For each point
x of M we have maps

εM,x : v(M) → TxM, TxΦ : TxM → TΦ(x)N, and εN,Φ(x) : v(N) → TΦ(x)N.

There is no natural map from v(M) to v(N). However, we can relate vector fields on M
and N in the following way:

Let X and Y be vector fields on M respectively N and let let f be a function which
is analytic in an open subset V of N . It follows from the definitions that the following
equalities are equivalent:

(i) TxΦεM,xX = εN,Φ(x)Y , for x in Φ−1(V ),
(ii) (εM,xX)(fΦ) = (εN,Φ(x))Y f , for x in Φ−1(V ),
(iii) X(fΦ) = (Y f)Φ on Φ−1(V ),
(iv) X(x)fΦ = Y (Φ(x))f , for all x in Φ−1(V ).

Lemma 4.3.8. Let Φ : M → N be an analytic map of manifolds. Given vector fields Xi

on M , and Yi on N , for i = 1, 2. Assume that TxΦεM,xXi = εN,Φ(x)Yi, for all x in M , and
for i =, 1, 2. Then we have that

TxΦεM,x[X1, X2] = εN,Φ(x)[Y1, Y2].

Proof: It follows from Remark 4.3.7 that the condition of the lemma is equivalent to
asserting that we, for every function f that is analytic in a neighborhood of a point Φ(x),
have that X(fΦ) = (Y f)Φ, in a neighborhood of x. The proof now consists in unraveling
the definitions involved as follows:

TxΦεM,x[X1, X2]f = [X1, X2]fΦ(x) = (X1X2)(fΦ)(x)− (X2X1)(fΦ)(x)

= X1(X2(fΦ))(x)−X2(X1(fΦ))(x)

= X1((Y2f)Φ)(x)−X2((Y1f)Φ))(x)

= Y1Y2f(Φ(x))− Y2Y1f(Φ(x)) = [Y1, Y2]f(Φ(x)) = εN,Φ(x)[Y1, Y2].

¤

4.4 The Lie algebra of a Lie group
In this section we shall show that the tangent space of a Lie group has a structure of

a Lie algebra, and that a homomorphism of Lie groups induces a homomorphism of Lie
algebras.

Definition 4.4.1. Let G be a Lie group. We shall say that a vector field X on G is left
invariant if, for every point a of G and every analytic function f : U → K on an open
subset U of G, we have that

(Xf)λa = X(fλa)

on the open subset a−1U of G. That is, for all b in G such that ab ∈ U , we have that
(Xf)(ab) = X(fλa)(b). Here λa is the left translation of Definition 4.1.7.



94 Lie groups

4.4.2. The left invariant vector fields on a Lie group G form a Lie subalgebra of v(G).
Indeed, if X and Y are left invariant vector fields on G, we have that

[X,Y ]f(ab) = XY f(ab)− Y Xf(ab) = X((Y f)λa)(b)− Y ((Xf)λa)(b)

= X(Y (fλa))(b)− Y (X(fλa))(b) = [X, Y ](fλa)(b).

Hence we have that [X, Y ] is left invariant.

Definition 4.4.3. The Lie algebra of left invariant vector fields on G is called the Lie
algebra of G and is denoted by . The map εG,e : v(G) → Te(G) of Paragraph 4.3.4 induces
a map

λG : g → Te(G).

Remark 4.4.4. Let G be a Lie group and let ϕ : U → G be a chart. The multiplication map
G×G → G is continuous. Consequently, we can choose charts ψ : V → G and χ : W → G,
such that χ(0) = e, and such that the multiplication induces as map

µ : V ×W → U.

Choose coordinates x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn) in U , V , and
W respectively. We write µ(y, z) = (µ1(y, z), . . . , µn(y, z)).

Given a tangent D in Te(G), we can write

D = Toχ(c1
∂

∂z1

+ · · ·+ cn
∂

∂zn

),

for some c1, . . . , cn in K. For each a in V and each analytic function f defined on an open
subset of G containing ψ(a) = ϕ(µ(a, 0)) we obtain equations

D(fϕµ(a, z)) =
n∑

i=1

ci
∂(fϕ)µ(a, z)

∂zi

(a, 0) =
n∑

i=1

n∑
j=1

ci
∂(fϕ)

∂xj

µ(a, 0)
∂µj

∂zi

(a, 0).

The map µ(y, z) is analytic in the variables y and z. Consequently, we have that Ψij(y) =
∂µj

∂zi
(y, 0) is analytic in y, and we have proved the expression

D(fλa) =
n∑

i=1

n∑
j=1

ciΨij(a)
∂(fϕ)

∂xj

(a), (4.4.4.1)

with Ψij(y) analytic.

Lemma 4.4.5. Let G be a Lie group and D a tangent vector in TeG. For each analytic
map f : U → K, on an open subset U of G, the function (Xf)U : U → K, defined by
(Xf)U(a) = D(fλa), is analytic. The map

XU : OG(U) → OG(U),

obtained in this way, for each open subset U of G, define a left invariant vector field on G.
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Proof: We have that D(fλa) depends only on the value of the function fλa near the unit e
of G. Choose charts and coordinates as in Remark 4.4.4. We obtain from Equation 4.4.4.1

Xf(a) = D(fλa) = D(fµ(a, z)) =
n∑

i=1

n∑
j=1

ciΨij(a)
∂(fϕ)

∂xj

(a),

with the Ψij(a) analytic in a. We obtain that D(fµ(a, z)) = D(fλa) is an analytic function
of a and we have proved the first part of the lemma.

It is clear, from the definition of the functions XU and the restriction functions ρU,V ,
that ρU,V XU = XV ρU,V . Consequently, the second assertion of the lemma holds.

It remains to prove that X is left invariant. Let f : U → K be analytic and let a be
in G. We must prove that (Xf)λa = X(fλa) on a−1U . Let b be in a−1U . We have that
(Xf)λa(b) = (Xf)(ab) = D(fλab) = D(fλaλb) = D((fλa)λb) = X(fλa)(b). Hence, X is
left invariant. ¤
Remark 4.4.6. Lemma 4.4.5 asserts that, to a derivation D in TeG, we can associate a left
invariant vector field X. In this way we obtain a map δG : TeG → g. This map is clearly
linear.

Choose charts and coordinates as in Remark 4.4.4. Let X = δG(D) be the left invariant
vector field associated to D = T0χ(c1

∂
∂z1

+ · · · + cn
∂

∂zn
). That is, we have that Xf(a) =

D(fλa), for all analytic functions f : U → K, and all a ∈ V . The Equation 4.4.4.1 can be
rewritten as

X =
n∑

i=1

n∑
j=1

ciΨij
∂

∂xj

,

where this expression means that Xf(ϕ(a)) =
∑n

i=1

∑n
j=1 ciΨij(a)∂(fϕ)

∂xj
µ(a, 0), for all ana-

lytic functions f : U → G and all a ∈ U .
Proposition 4.4.7. The map εG,e : v(G) → Te(G) of Paragraph 4.3.4 induces an isomor-
phism of K vector spaces

εG : g → Te(G).

The inverse of εG is the map δG : Te(G) → g defined in Remark 4.4.6.

Proof: It suffices to show that εG and the map δG defined in Remark 4.4.6 are inverse maps.
Let D be a vector in TeG, and let X = δG(D) be the vector field associated to D in

Remark 4.4.6. For f in OG,x we have that εG(x)(f) = X(e)f = Xf(e) = D(fλe) = Df .
Hence we have that εGδG = id.

Conversely, let X be a vector field on G, and let D = εG(X) = X(e). Let Y = δG(D)
be the vector field associated to D in Remark 4.4.6. For all analytic functions f : U → K
defined on an open subset U of G, and for all points a of U we have that Xf(a) =
(Xf)λa(e) = X(fλa)(e) = X(e)(fλa) = D(fλa) = Y f(a) = δGεG(X)(a). Hence, we have
proved the proposition. ¤
Remark 4.4.8. It follows from Proposition 4.4.7 that we can use the map δG : v(G) → TeG
to give the space TeG a structure as a Lie group.
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Definition 4.4.9. Let G and H be Lie groups with Lie algebras g and h. Moreover, let
Φ : G → H be a homomorphism of Lie groups. Then we have a map

l(Φ) : g → h

defined by l(Φ) = δ−1
H TeΦδG. If Ψ : F → G is another map of Lie groups we clearly have

that l(ΨΦ) = l(Ψ)l(Φ).

Proposition 4.4.10. Let Φ : G → H be a homomorphism of Lie groups. The map

l(Φ) : g → h

of the corresponding Lie algebras is a Lie algebra homomorphism.

Proof: It is clear that l(Φ) is a map of vector spaces. To show that it is a map of Lie
algebras, let Xi, for i = 1, 2, be left invariant vector fields on G and let Yi = l(Φ)Xi.
Since the maps δG and δH are induced by the maps εG,e and εH,e of Paragraph 4.3.4 and
Remark 4.3.7, we have that the proposition follows from Lemma 4.3.8, once we can show
that TeΦδGXi = δHYi. However, we have that TeΦδGXi = δH l(Φ)Xi = δHYi, and we have
finished the proof. ¤

4.5 One parameter subgroups of Lie groups
In this section we shall construct one parameter subgroups of any Lie group and thus

generalize the construction of one parameter subgroups of the matrix groups given in
Section 2.7. For the construction we need a well known result about differential equations,
which is proved for differentiable functions in any beginning course in differential equations,
or in advanced calculus courses. We shall start by giving a proof of the result because we
shall use it in the less frequently presented case of analytic functions.

Proposition 4.5.1. For p = 1, . . . , n, we give analytic functions fp : U → K defined on
an open subset U of Kn. The differential equation

g′p(t) = fp(g1(t), . . . , gn(t))

in the functions g1, . . . , gn in the variable t, with initial conditions gp(0) = ap, for p =
1, . . . , n, with ap ∈ K, has a unique solution g1(t), . . . , gn(t), for t in a neighborhood V of
0 in K, and the functions gp are analytic on V .

Proof: Write
fp(x) =

∑
i∈I

cpix
i, for p = 1, . . . , n.

Let

gp(t) =
∞∑

q=0

dpqt
q, for p = 1, . . . , n
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be formal power series. In order to satisfy the differential equation of the proposition, we
must have that

∞∑
q=1

qdpqt
q−1 =

∑
i∈I

cpi

( ∞∑
q=0

d1qt
q

)i1

· · ·
( ∞∑

q=0

dnqt
q

)in

.

Hence there are unique polynomials Qm(cpi, d1q, . . . , dnq), for |i| < m and q < m, with
positive integers as coefficients, such that

dpm =
1

m
Qm(cpi, d1q, . . . , dnq), for p = 1, . . . , n.

By induction on m, starting with the initial condition dp0 = ap, we obtain that the dpm

are uniquely determined such that the formal series g1(t), . . . , gn(t) satisfy the differential
equation of the proposition.

It remains to prove that the formal series g1, . . . , gn define analytic functions.
Assume that we have real numbers c̄pi, for p = 1, . . . , n and for all i in I, such that

|cpi| ≤ c̄pi,

for all p and i, and such that the functions

f̄p(x) =
∑
i∈I

c̄pix
i, for p = 1, . . . , n

are analytic. As we saw above, we can find unique formal series

ḡp(t) =
∞∑

q=o

d̄pqt
q

that solve the differential equation
ḡ′p(t) = f̄p(ḡ1(t), . . . , ḡn(t)). (4.5.1.1)

If the functions ḡ1, . . . , ḡn were analytic, the same would be true for g1, . . . , gn. Indeed, we
have inequalities

|dpm| = 1

m
|Qm(cpi, d1q, . . . , dnq)|

≤ 1

m
Qm(|cpi|, |d1q|, . . . , |dnq|) ≤ 1

n
Qm(c̄pi, d̄1q, . . . , d̄nq) = d̄pm.

Hence, in order to prove the proposition, it suffices to construct analytic functions f̄p(x) =∑
i∈I c̄pix

i such that |cpi| ≤ c̄pi, for all p and i, and such that the corresponding solutions
ḡ1, . . . , ḡn of Equation 4.5.1.1 are analytic.

To construct the f̄p we note that the functions fp are analytic on some neighborhood of
0 in Kn. Consequently there are positive constants C and r such that

∑
i∈I

|cpi|r|i| < C.
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Let
c̄pi =

C

r|i|
.

We have that |cpi|r|i| ≤
∑

i∈I |cpi|r|i| < C = c̄pir
|i|. Consequently, we have that |cpi| ≤ c̄pi,

for all p and i. Moreover, we have that

f̄p(x) =
∑
i∈I

c̄pix
i = C

∑
i∈I

(x

r

)i

=
C∏m

q=1

(
1− xq

r

) .

Hence f̄1, . . . , f̄n are analytic. Moreover, the power series

ḡp(t) = ḡ(t) = r

(
1−

(
1− (n + 1)C

t

r

) 1
n+1

)
,

is analytic in a neighborhood of 0 and satisfies the differential equation 4.5.1.1, that is

ḡ′(t) =
C(

1− ḡ(t)
r

)n .

Indeed, we have that

ḡ′(t) = C

(
1− (n + 1)C

t

r

)− n
n+1

,

and (
1− (n + 1)C

t

r

) n
n+1

=

(
1− ḡ(t)

r

)n

.

¤
Definition 4.5.2. A one parameter subgroup of a Lie group G is an analytic mapping
γ : K → G, which is also a group homomorphism. The tangent of a one parameter subgroup
is the tangent γ′(0) of the corresponding curve at the unit element, as defined in 3.6.9.

Remark 4.5.3. Let G be a Lie group and let γ : T → G be an analytic map from an open
subset T of K containing 0. After possibly shrinking T we choose a chart ϕ : U → G such
that γ(T ) ⊆ ϕ(U) and ϕ(0) = γ(0). As in Remark 4.4.4 we choose charts ψ : V → G and
χ : W → W , such that χ(0) = e, and such that the multiplication induces as map

µ : V ×W → U.

Moreover, we let x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn) be coordinates
in U, V , and W respectively. Write µ(y, z) = (µ1(y, z), . . . , µn(y, z)) and let ϕ−1γ =
(γ1, . . . , γn).

Assume that we have γ(s+t) = γ(s)γ(t), for all s and t in T in a neighborhood of 0, that
is, we have an equation µj(γ1(s), . . . , γn(s), γ1(t), . . . , γn(t)) = γj(s + t). We differentiate
the latter equation with respect to t at t = 0, and obtain

dγj

dt
(s) =

n∑
i=1

∂µj

∂yi

(γ1(s), . . . , γn(s), 0)
dγi

dt
(0) =

n∑
i=1

Ψij(γ(s))ci, (4.5.3.1)
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with Ψij(y) =
∂µj

∂zi
(y, 0) and ci =

dγj

dt
(0).

Fix a basis for Te(G). It follows from Proposition 4.5.1 that, when we fix c1, . . . , cn, the
curve γ : T → G is determined uniquely in a neighborhood of 0 in K by the condition that
γ′(0) = (c1, . . . , cn) in the fixed basis of Te(G).

Proposition 4.5.4. Let G be a Lie group and D a tangent of G at the identity e. Then
there is a unique one parameter subgroup γ : K → G of G whose tangent γ′(0) at 0 is equal
to D.

Proof: It follows from Remark 4.5.3 that a one parameter subgroup of G, with derivative
D at 0, is uniquely determined in a neighborhood of 0 in K.

Choose charts and coordinates of G as in Remark 4.5.3. Let γ1(t), . . . , γn(t) be solutions,
in a neighborhood T of 0 in K, of the differential equation 4.5.3.1 with derivative (c1, . . . , cn)
at 0, and let γ(t) = ϕ(γ1(t), . . . , γn(t)).

We shall show that the curve can be extended, in a unique way, to a one parameter
subgroup of G.

First we shall show that γ(s+ t) = γ(s)γ(t), for s and t in some neighborhood of 0 in K.
Since multiplication in G is associative we have an equation µj(µ(y, z), z′) = µj(y, µ(z, z′)).
Differentiating the latter equation with respect to z′j at z′ = 0 we get

Φijµ(y, z) =
∂µj

∂z′i
(µ(y, z), 0) =

n∑

k=1

∂µj

∂zk

(y, z)
∂µk

∂z′i
(z, 0) =

n∑

k=1

Φik(z)
∂µj

∂zk

(y, z). (4.5.4.1)

On the other hand, differentiating µj(γ(s), γ(t)) with respect to t, we obtain

dµj

dt
(γ(s), γ(t)) =

n∑

k=1

∂µj

∂zk

(γ(s), γ(t))
dγk

dt
(γ(t)) =

n∑

k=1

n∑
i=1

∂µj

∂zk

(γ(s), γ(t))Ψik(γ(t))ci.

It follows from the latter equation and Equation 4.5.4.1, with y = γ(s) and z = γ(t), that

dµj

dt
(γ(s), γ(t)) =

n∑
i=1

Φij(µ(γ(s), γ(t)))ci.

We also have that
dγj

dt
(s + t) =

n∑
i=1

Ψij(γ(s + t))ci,

since γj(t) and thus γj(s + t) satisfies the differential equation 4.5.3.1 in a neighborhood
of 0. Hence we have that µj(ϕ

−1γ(s), ϕ−1γ(t)) and γj(s + t) satisfy the same differential
equation 4.5.3.1, and for t = 0 we have that µ(ϕ−1γ(s), ϕ−1γ(0)) = γ(s). It follows from
the uniqueness part of Proposition 4.5.1 that we must have that γ(s)γ(t) = γ(s + t), for s
and t in some neighborhood S of 0 in K.

We can now extend the curve γ : T → G uniquely to a one parameter subgroup γ : K →
G of G. First we note that any extension is unique. Indeed, given t in K, then 1

m
t is in

T for some positive integer m. Then we have that γ(t) = γ(n
n
t) = γ( 1

n
t)n, such that γ( 1

n
t)
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determines γ(t). To extend γ to K we use the same method. Given t in K, we choose a
positive integer p such that 1

p
t is in S. If q is another such integer we obtain that

γ

(
1

p
t

)p

= γ

(
q

pq
t

)p

= γ

(
1

pq
t

)
pq = γ

(
q

pq
t

)
q = γ

(
1

q
t

)q

,

since p 1
pq

t and q 1
pq

t both are in T . It follows that we can define uniquely γ(t) by γ(t) =

γ(1
p
t)p, for any positive integer p such that 1

p
t is in T . We can thus extend the curve to a

curve γ : K → G and the extension is analytic because division by p is analytic in K, and
taking p’th power is analytic in G.

Finally, we have that γ is a group homomorphism because, for any s and t in K, we
choose a positive integer p such that 1

p
s, 1

p
t and 1

p
(s + t) are in T . Then we have that

γ(s + t) = γ

(
1

p
(s + t)

)p

= γ

(
1

p
s

)p

γ

(
1

p
t

)p

= γ(s)γ(t).

We have proved that γ is a one parameter subgroup of G and that the condition that
γ′(0) = (c1, . . . , cn) in the given coordinates of Te(G) determines γ uniquely. Thus we have
proved the proposition. ¤

Example 4.5.5. Let G be one of the matrix groups Gln(K), Sln(K), GS(K), or SGS(K).
We have identified, in 2.5, the tangent space of G with a subspace g of Mn(K). Given
D in g, it follows from assertion (ii) of 2.2.8 and from 2.4.8 and that γ(t) = exp(tD) is
an one parameter subgroup of G, and from Example 2.4.15 that the tangent γ′(0) is D.
Consequently, exp(tD) is the unique one parameter subgroup of G with tangent D.

4.6 The exponential function for Lie groups
We shall next construct an exponential function for Lie groups, generalizing the expo-

nential function for matrix groups defined in Section 2.2.

4.6.1. For Lie groups there is a Taylor expansion of analytic functions generalizing the
usual Taylor expansion in analysis. We shall in this paragraph deduce the expansion on
Lie groups from that of analysis.

Let G be a Lie group and X a vector field on G. To X there correspond a unique one
parameter subgroup γ : K → G of G with tangent X(e), that is γ′(0) = X(e). Choose a
chart ϕ : U → G of G such that ϕ(0) = e and choose coordinates x = (x1, . . . , xn) in U . In
this chart we can write

X(e) = T0ϕ

(
c1

∂

∂x1

+ · · · cn
∂

∂xn

)
,

for some elements c1, . . . , cn of K. Let f : ϕ(U) → K be an analytic function. For each
point x of U it follows from Remark 4.4.6 that

Xf(ϕ(x)) =
n∑

i=1

n∑
j=1

ciΨij(x)
∂(fϕ)

∂xj

(x), (4.6.1.1)



The exponential function for Lie groups 101

where Ψij(y) =
∂µj

∂zi
(y, 0), and where (µ1, . . . , µn) represent the multiplication of G in the

chart. Write
ϕ−1γ(t) = (γ1(t), . . . , γn(t))

in a neighborhood of 0 in K. We have that γj(s + t) = µj(ϕ
−1γ(s), ϕ−1γ(t)) for s and t in

a neighborhood of 0 in K. Differentiation of the latter expression with respect to t, at 0,
gives

dγj

dt
(t) =

n∑
i=1

∂µj

∂zi

(ϕ−1γ(x), 0)
dγi

dt
(0) =

n∑
i=1

Ψij(ϕ
−1γ(t))ci.

Consequently, we have that
d(fγ)

dt
(t) =

n∑
j=1

∂(fϕ)

∂xj

(ϕ−1γ(t))
dγj

dt
(t) =

n∑
i=1

n∑
j=1

∂(fϕ)

∂xj

(ϕ−1γ(t))Ψij(ϕ
−1γ(t))ci.

Comparing the latter formula with Formula 4.6.1.1 we get that
d(fγ)

dt
(t) = Xf(γ(t)). (4.6.1.2)

We obtain that
d2(fγ)

dt2
(t) =

d(Xf)

dt
(γ(t)) = X2f(γ(t)),

where the first equality is obtained by differentiation of both sides of Equation 4.6.1.2 and
the second by applying Equation 4.6.1.2 to Xf . Iterating we obtain that

di(fγ)

dti
(t) = X if(γ(t)), for i = 1, 2, . . . .

Taylor expansion of the function fγ : V → K in one variable defined in a neighborhood of
0 in K gives

fγ(t) = fγ(0) +
1

1!

d(fγ)

dt
(0) +

1

2!

d2(fγ)

dt2
(0) + · · · .

We obtain that

fγ(t) = f(e) +
1

1!
Xf(e)t +

1

2!
X2f(e)t2 + · · · =

((
(1 +

1

1!
tX +

1

2!
t2X2 + · · ·

)
f

)
(e),

which is the Taylor expansion of f on G, and converges in a neighborhood of 0 in K.

Definition 4.6.2. To every left invariant vector field X on a Lie group G we have asso-
ciated, in Proposition 4.5.4, a unique one parameter subgroup γ : K → G of G. We write
γ(t) = exp(tX) and define a map exp: g → G on the space of left invariant vector fields
by exp(X) = γ(1). The map exp is called the exponential function of G.

Example 4.6.3. Let G be one of the matrix groups Gln(K), Sln(K), GS(K), or SGS(K).
It follows from 4.5.5 that the exponential function maps a vector D in the tangent space g
of G to exp(D), where exp is the exponential function of Section 2.2. Hence, in the case of
the matrix groups the exponential function, as defined in this section, is the same as the
exponential map as defined in 2.2.
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Example 4.6.4. Let V be a vector space. We choose a basis v1, . . . , vn of V and consider
V as a normed space, isomorphic to Kn, via this basis (see 2.1.7). Then V is a Lie group
with respect to the addition of V , and the isomorphism ϕ : Kn → V , defined by the basis is
a chart. The tangent space of V at 0 is has, via this chart, a basis δ1, . . . , δn corresponding
to ∂

∂x1
, . . . , ∂

∂xn
, where x1, . . . , xn are coordinates on Kn. Let D = a1δ1 + · · · + anδn The

map γ : K → V defined by γ(t) = (ta1v1 + · · ·+ tanvn) is a one parameter subgroup whose
derivative at 0 is a1v1 + · · · + anvn. Consequently, we have that exp(a1δ1 + · · · + anδn) =
a1v1 + · · · + anvn, and we can identify V with its tangent space at 0, via the exponential
map.

4.6.5. By the Taylor expansion we obtain, for each analytic function f : U → K, an ex-
pression

f exp(tX) =

(
(1 +

1

1!
tX +

1

2!
t2X2 + · · · )f

)
(e).

4.6.6. Choose, as in Paragraph 4.6.1, a chart ϕ : U → G of G and coordinates x1, . . . , xn of
U . We define a norm on the space Te(G) via the basis ∂

∂x1
, . . . , ∂

∂xn
of T0(U) (see Example

2.1.7). Denote the coordinates of T0(U) with respect to this basis by u1, . . . , un. The space
g obtains a norm via the isomorphism εG : g → Te(G) of Proposition 4.4.7. It follows from
Example 2.1.7 that the analytic structure on g is independent of the choice of basis. We
shall next show that the map exp: g → G is analytic with respect to this analytic structure
of g.

Proposition 4.6.7. The exponential map defines an analytic map
exp: g → G.

Moreover, the map T0 exp: T0(g) → Te(G) is an isomorphism. More precisely, if we identify
the tangent space of g at 0 with g, as in Example 4.6.4, we have that the map of left invariant
vector fields associated to exp is the identity map.

Proof: We shall use the same notation as in Paragraph 4.6.1. In this notation the vector
T0ϕ

(
u1

∂
∂x1

+ · · ·+ un
∂

∂xn

)
of Te(G) corresponds to the left invariant vector field

X =
n∑

i=1

n∑
j=1

uiΨij(x)
∂

∂xj

.

Taylors formula applied to the analytic functions xjϕ
−1 gives

γj(t) =
1

1!
(Xxjϕ

−1)(e)t +
1

2!
(X2xjϕ

−1)(e)t2 + · · · .

We obtain formulas

(Xxjϕ
−1)(ϕ(x)) =

n∑
i=1

uiΨij(x), for j = 1, . . . , n



The exponential function for Lie groups 103

and

X2(xjϕ
−1)(ϕ(x)) = X(Xxjϕ

−1)(ϕ(x))

=
n∑

i=1

n∑

k=1

uiΨik(x)
∂(Xxjϕ

−1)

∂xk

(ϕ(x)) =
n∑

i=1

n∑

k=1

n∑

l=1

uiulΨik(x)
∂Ψlj

∂xk

(x).

Iterating these calculations we obtain expressions for X i(xjϕ
−1)(ϕ(x)), and we see that

γj(t) is a power series in tu1, . . . , tun that converges in a neighborhood of 0 in K, for fixed
u1, . . . , un.

Fix c = (c1, . . . , cn) such that the series γj(t) converges for |t| ≤ Cc for some positive
constant Cc. Let ε be the smallest nonzero |ci|, for i = 1, . . . , n. We shall show that
there is an open neighborhood Uc of c in T0(U) such that, for all u ∈ Uc, the series γ(t)
converges for t ≤ 1

2
. To show this we may, by changing the coordinate system, which

does not affect the analytic structure of T0(U), assume that all the ci are nonzero. Let
ε = mini |ci|. Then, for u in Uc = B(c, ε), we have an inequality |ui| ≤ |ui−ci|+ |ci| < 2|ci|.
Consequently, we have that |tui| < |2tci| and γ(t) converges at 2tc, when |t| < 1

2
Cc. Let

X = {u ∈ T0(U)
∣∣ |ui| ≤ 1}. Then X is closed and bounded and thus compact by

Proposition 3.9.2. The sets Uc for c ∈ X cover X and we can find a finite subcover
Uc1 , . . . , Ucm . For each i = 1, . . . ,m there is a corresponding positive constant Ci such that
γj(t) converges for u ∈ Uc and for |t| < Ci. Let C = mini Ci. Then we have that γj(t)
converges for all u ∈ B(0, 1

2
) and all t such that |t| < C. Consequently γj(t) is an analytic

function of u = (u1, . . . , un) in some neighborhood of 0 in U . The same argument applied
to γ1, . . . , γn shows that γ is analytic in a neighborhood of 0 in g.

To prove the last assertion of the Proposition we differentiate γj(1), with respect to
u1, . . . , un at 0. Since X i(xjϕ

−1(ϕ(x))) is a polynomial of degree i in u1, . . . , un, we have
that

∂γj

∂ui

(0) =
∂(Xxjϕ

−1)

∂ui

(0) =

(
∂

∂ui

n∑

l=1

ulΨlj

)
(e) = uiΨij(0).

However, we have that Ψij(0) =
∂µj

∂wj
(0, 0), where the wj are the variables corresponding

to the second coordinate of the µj, and the maps µ1(0, w), . . . , µn(0, w) correspond to
multiplication by e and is thus the identity map. Consequently, we have that (Ψij(0)) is
the n× n identity matrix. We obtain that

∂γj

∂ui

(0) = In,

as we wanted to prove. ¤
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5 Algebraic varieties
In this chapter we shall show that there is a beautiful geometric theory for matrix groups

over an arbitrary field, that is similar to the one for analytic manifolds presented in Chapter
3. To compensate for the lack of a norm on the fields, and the ensuing lack of exponential
function, the inverse function theorem, and other techniques depending on the access to
analytic functions, we shall make extensive use of the machinery of commutative algebra.

5.1 Affine varieties
We saw in Section 3.2 that the matrix groups are the zeroes of polynomials in some space

Mn(K). The central objects of study of algebraic geometry are the zeroes of polynomials.
It is therefore natural to consider the matrix groups from the point of view of algebraic ge-
ometry. In this section we shall introduce algebraic sets that form the underlying geometric
objects of the theory.

5.1.1. We fix a field K, and an inclusion K ⊂ K into an algebraically closed field K, that
is, a field such that every polynomial amxm + am−1x

m−1 + · · · + a0 in a variable x with
coefficients in K has a zero in K (see Exercise 5.1.3).

Remark 5.1.2. The reason why we introduce a second field is that we want to assure that
all polynomials have zeroes. For example the polynomial x2 +1 does not have a zero in the
real numbers R, but it has zeroes in the algebraically closed field of complex numbers C,
containing R. The question of zeroes of analytic function never came up in the analytic
theory of Chapter 3, where the underlying sets are manifolds, and thus locally look like
an open subset of Kn. Given a field K we can always find an algebraically closed field
containing K (see Exercises 5.1.8).

Definition 5.1.3. We denote the polynomial ring in the variables x1, . . . , xn with coeffi-
cients in K by K[x1, . . . , xn]. The cartesian product K

n we denote by An
K
, and we call An

K

the n dimensional affine space over K, or simply the affine n space.
We say that a subset X of An

K
is an affine variety if there exists an ideal I in K[x1, . . . , xn],

such that X is the set of common zeroes of the polynomials f of I. That is
X = V(I) = {(a1, . . . , an) ∈ An

K
: f(a1, . . . , an) = 0 for all f ∈ I}.

We do not need all the polynomials in an ideal to define an affine variety. It suffices
to consider certain families of polynomials that generate the ideal in a sense that we shall
explain next. Later, as a consequence of Corollary 5.1.17, we shall see that it suffices to
consider a finite number of polynomials.

Definition 5.1.4. Let R be a ring and I and ideal in R. A subset {ai}i∈I is called a set of
generators for I if I is the smallest ideal containing the elements ai, for i ∈ I. Equivalently,
I is generated by the set {ai}i∈I if I consists of the sums b1ai1 + · · ·+ bmaim , for all finite
subsets {i1, . . . , im} of I, and elements b1, . . . , bm in R (see Exercise 5.1.7).

Remark 5.1.5. Let I be an ideal in K[x1, . . . , xn] generated by polynomials {fi}i∈I . Then
X = V(I) is the common zeroes V({fi}i∈I) of the polynomials fi, for i ∈ I. Indeed, if a
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point x is a common zero for the polynomials in I, then it is a zero for the polynomials fi.
Conversely, if x is a common zero for the polynomials fi, for all i ∈ I, then x is a zero for
all polynomials in I, because all polynomials in I are of the form g1fi1 + · · · + gmfim , for
some indices i1, . . . , im of I, and polynomials g1, . . . , gm of K[x1, . . . , xn].

Example 5.1.6. As we remarked in Section 3.2 the set Sln(K) is the affine variety of
Mn(K) = An2

K
where the polynomial det(xij)−1 is zero. When S is invertible the set GS(K)

is the zeroes of the n2 quadratic equations in the variables xij obtained by equating the
n2 coordinates on both sides of (xij)S

t(xij) = S. Finally, SGS(K) is the subset of Gln(K)
which is the intersection of GS(K) with the matrices where the polynomial det(xij) − 1
vanishes. On the other hand we have that Gln(K) itself can be considered as the zeroes of
polynomials in the affine space A

(n+1)2

K
. Indeed, we saw in Example 1.2.11 that we have an

injection ϕ : Gln(K) → Sln+1(K). As we just saw Sln+1(K) is the zeroes of a polynomial
of degree n + 1 in the variables xij, for i, j = 1, . . . , n + 1, and clearly im ϕ is given in
Sln+1(K) by the relations x1i = xi1 = 0, for i = 2, . . . , n + 1. Hence all the matrix groups
Gln(K), Sln(K) or GS(K), for some invertible matrix S, are affine varieties.

Example 5.1.7. Let X and Y be affine varieties in An
K
respectively Am

K
. Then the subset

X × Y is an affine variety in An
K
×Am

K
. Indeed, let I and J , be ideals in the polynomial

rings K[x1, . . . , xn] respectively K[y1, . . . , ym] such that X = V(I) respectively Y = V(J)
in An

K
respectively Am

K
. Then X × Y is the affine variety in Am+n

K
= An

K
×Am

K
defined

by the smallest ideal in K[x1, . . . , xn, y1, . . . , ym] containing I and J . This ideal consists
of all polynomials of the form af + bg, where f and g are in I respectively J , and a
and b are in K[x1, . . . , xn, y1, . . . , ym]. Indeed, it is clear that all the polynomials of this
form are zero on X × Y . Conversely, if (a1, . . . , an, b1, . . . , bm) in Am+n

K
is not in X × Y ,

then there is a polynomial f in I, or a polynomial g in J , such that f(a1, . . . , an) 6= 0 or
g(b1, . . . , bm) 6= 0. Consequently, the point (a1, . . . , an, b1, . . . , bm) is not in the common
zeroes of all the polynomials of the form af + bg.

Lemma 5.1.8. The affine varieties in An
K

have the following three properties:
(i) The empty set and An

K
are affine varieties.

(ii) Let {Xi}i∈I be a family of affine varieties. Then the intersection ∩i∈IXi is an affine
variety.

(iii) Let X1, . . . , Xm be a finite family of affine varieties. Then the union X1 ∪ · · · ∪Xm

is an affine variety.

Proof: To prove the first assertion is suffices to observe that the common zeroes of the
polynomials 1 and 0 are ∅ respectively An

K
.

Let Xi = V(Ii), for i ∈ I, where Ii is an ideal of K[x1, . . . , xn]. Moreover, let I be
the smallest ideal in K[x1, . . . , xn] that contains all the ideals Ii. That is, I is the ideal
generated by all the polynomials in the ideals Ii for i ∈ I, and hence consists of all sums
fi1 + · · · + fim , for all finite subsets {i1, . . . , im} of I, and with fij ∈ Iij . It is clear that
V(I) = ∩i∈IV(Ii) = ∩i∈IXi. We have proved the second assertion.
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To prove the third assertion we let Xi = V(Ii) for some ideal Ii in K[x1, . . . , xn]. Let I
be the ideal in K[x1, . . . , xn] generated by the elements in the set

{f1 · · · fm | fi ∈ Ii, for i = 1, . . . , m}.
We have an inclusion ∪m

i=1Xi = ∪m
i=1V(Ii) ⊆ V(I). To prove the opposite inclusion we take

a point x in An
K
\ ∪m

i=1V(Ii) Then there exists, for i = 1, . . . , m a polynomial fi ∈ Ii such
that fi(x) 6= 0. We have that (f1 · · · fm)(x) = f1(x) · · · fm(x) 6= 0, and thus x /∈ V(I).
Hence we that V(I) ⊆ ∪m

i=1Xi, and we have proved the third assertion of the lemma. ¤
Remark 5.1.9. The properties of Lemma 5.1.8 can be interpreted as stating that the affine
varieties of An

K
form the closed sets of a topology (see Definition 3.3.1).

Definition 5.1.10. The topology on An
K
whose open sets are the complements of the affine

varieties is called the Zariski topology. For each subset X of An
K

the topology induced on
X is called the Zariski topology on X.

When X is an affine variety in An
K
we call the open subsets of X in the Zariski topology,

quasi affine varieties.

Example 5.1.11. The closed sets for the Zariski topology on A1
K

= K consists of the
common zeroes of polynomials in one variable with coefficients in the field K. In the ring
K[x] all ideals can be generated by one element (see Exercise 5.1.2) In particular, every
closed set different from K is finite, and consists of the zeroes of one polynomial in K[x].

Take K and K to be R respectively C. Then i is not a closed subset of C because every
polynomial in R[x] that has i as a root also has −i as a root. However, the set {i,−i} is
closed in C, beeing the zeroes of the polynomial x2 + 1.

Example 5.1.12. In the Zariski topology on Am+n

K
= Am

K
× An

K
the sets of the form

U × V , where U and V are open in Am
K

respectively An
K

are open in Am
K
× An

K
. This

follows immediately from Example 5.1.7
The Zariski topology on the product Am

K
× An

K
is however, not the product topology

of the topologies on Am
K

and An
K

as defined in Example 3.3.3. Indeed, for example when
m = n = 1 the diagonal of A1

K
×A1

K
is closed. However, the closed sets in A1

K
are finite,

or the whole space (see Example 5.1.11). Hence the sets X × Y with X closed in Am
K

and
Y is closed in An

K
, can not be the diagonal.

Some open sets, often called principal, are particularly important for the Zariski topology.

Definition 5.1.13. Let f be a polynomial in K[x1, . . . , xn]. The set
V(f) = {x ∈ An

K
| f(x) = 0},

where f vanishes, is a closed subset of An
K
. For each affine variety X of An

K
we denote by

Xf the open subset X \ V(f) of X. We call the subsets of the form Xf , the principal open
subsets.

Lemma 5.1.14. Let X be an affine variety in An
K

and let U be an open subset of X. For
each point x of U there is a polynomial f in K[x1, . . . , xn] such that x ∈ Xf , and Xf ⊆ U .
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Proof: We have that X \ U is a closed subset of An
K
. Consequently there is an ideal I of

K[x1, . . . , xn] such that X \ U = V(I). Since x ∈ U there is a polynomial f in I such that
f(x) 6= 0. Then x ∈ Xf , by the definition of Xf . Since f ∈ I, we have that V(I) ⊆ V(f).
Hence X \ U ⊆ X ∩ V(f), or equivalently, Xf ⊆ U ¤

It is interesting, and useful, to notice that every affine variety is the common zeroes of a
finite number of polynomials. Before we prove this important fact we shall introduce some
terminology.

Definition 5.1.15. We say that a ring R is noetherian if every ideal in R is finitely
generated. That is, let I be an ideal in R, then there is a finite set of elements a1, . . . , am

such that I is the smallest ideal of R containing a1, . . . , am. Equivalently, the elements of
I consists of all elements of the form a1b1 + · · ·+ ambm, for all elements b1, . . . , bm of R.

Proposition 5.1.16. Let R be a noetherian ring. Then the ring R[x] of polynomials in
the variable x with coefficients in R is also noetherian.

Proof: Let J be an ideal of R[x], and let I be the subset of R consisting of all elements
a in R, such that axm + am−1x

m−1 + · · · + a0 is in J for some nonnegative integer m and
some elements a0, . . . , am−1 in R. We have that I is an ideal of R. Indeed, if a ∈ I, then
ba ∈ I, for all b ∈ R, because there is a polynomial f(x) = axp + ap−1x

p−1 + · · · + a0 in
J , and then bf(x) = baxp + bap−1x

p−1 + · · ·+ ba0 is in J . Moreover, if b is in I then a + b
is in I because some g(x) = bxp + bp−1x

p−1 + · · · + b0 is in J . Assume that q ≥ p. Then
f(x)−xq−pg(x) = (a+b)xq+(ap−1+bq−1)x

q−1+· · ·+(a0+bq−p)x
q−p+bq−p−1x

q−p−1+· · ·+b0

is in J , and thus a + b ∈ I. A similar argument shows that a + b is in I when p ≤ q.
In a similar way we show that the set Ii consisting of the coefficient of xi of all polynomials

of J of degree at most i, is an ideal.
We have that R is noetherian, by assumption, so all the ideals I, and Ii are finitely

generated. Choose generators a1, . . . , am for I, and bi1, . . . , bimi
for Ii, for i = 0, 1, . . . .

Moreover, we choose polynomials in R[x] whose highest nonzero coefficient is a1, . . . , am,
respectively. Multiplying with an appropriate power of x we can assume that all these
polynomials have the same degree p. Hence we can choose polynomials fi(x) = aix

p +
ai(p−1)x

p−1 + · · ·+ ai0, for i = 1, . . . , m. Moreover, we choose polynomials fij(x) = bijx
i +

bij(i−1)x
i−1 + · · ·+ bij0 in J , for i = 0, 1, . . . and j = 1, . . . , mi.

We shall show that the polynomials S = {f1, . . . , fm} ∪ {fi1 , . . . , fimi
: i = 0, . . . , p− 1},

generate J . It is clear that all polynomials in J of degree 0 is in the ideal generated by
the polynomials in S. We proceed by induction on the degree of the polynomials of J .
Assume that all polynomials of degree strictly less than p in J lie in the ideal generated
by the elements of S. Let f(x) = bxq + bq−1x

q−1 + · · · + b0 be in J . Assume that q ≥ p.
We have that b ∈ I. Hence b = c1a1 + · · · + cmam, for some c1, . . . , cm in R. Then
g(x) = f(x) − c1x

q−pf1(x) − · · · − cmxq−pfm(x) is in J and is of degree strictly less than
q. Hence g(x) is in the ideal generated by the elements of S by the induction assumption.
Since f(x) = c1f1(x)+ · · ·+ cmfm(x)+ g(x), we have proved that all polynomials of degree
at least equal to p are in the ideal generated by the elements in S.
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When q < p we reason in a similar way, using bq1, . . . , bqmq and fq1, . . . , fqmq , to write
f(x) as a sum of an element in J of degree strictly less than q and an element that is in
the ideal generated by the elements {fij}. By induction we obtain, in this case, that all
polynomials in J of degree less than p are in the ideal generated by S, and we have proved
the proposition. ¤
Corollary 5.1.17. (The Hilbert basis theorem) The ring K[x1, . . . , xn] is noetherian.

Proof: The field K has only the ideals (0) and K (see Exercise 1.3.2), and consequently
is noetherian. It follows from the Proposition, by induction on n, that K[x1, . . . , xn] is
noetherian. ¤
5.1.18. The Zariski topology is different, in many important respects, from metric topolo-
gies. We shall next show that the quasi affine varieties are compact and that they have a
unique decomposition into particular, irreducible, closed sets.
Proposition 5.1.19. All quasi affine varieties are compact topological spaces.

Proof: Let X be an algebraic subset of An
K
, and let U be an open subset of X. Moreover

choose an open subset V of An
K

such that V ∩ X = U . Let U = ∪i∈IUi be a covering
of U by open subsets Ui. Choose open subsets Vi of An

K
such that Ui = X ∩ Vi. Then

V = (V \X) ∪ ∪i∈I(Vi ∩ V ) is a covering of V by open sets of An
K
. If we can find a finite

subcover Vi1 ∩V, . . . , Vim ∩V, V \X, then Ui1 , . . . , Uim is an open cover of U . Consequently
it suffices to show that every open subset V of An

K
is compact.

It follows from Lemma 5.1.14 that it suffices to prove that every covering V = ∪i∈I(An
K

)fi

of V by principal open sets (An
K

)fi
has a finite subcover. Let I be the ideal generated by

the the elements fi, for i ∈ I. It follows from Corollary 5.1.17 that I is generated by a
finite number of elements g1, . . . , gm. Since (An

K
)fi
⊆ V , we have that V(fi) ⊇ An

K
\ V , for

all i ∈ I. Consequently, we have, for all g ∈ I, that V(g) ⊇ An
K
\ V , that is (An

K
)g ⊆ V .

Moreover, since the (An
K

)fi
cover V , we have that for each x ∈ V there is an fi such that

fi(x) 6= 0. Consequently, there is a gj such that gj(x) 6= 0. Hence we have that the sets
(An

K
)gi

, for i = 1, . . . , m, cover V , and we have proved the proposition. ¤
Corollary 5.1.20. Every sequence U ⊇ X1 ⊇ X2 ⊇ · · · of closed subsets of a quasi affine
variety U is stationary, that is, for some positive integer m we have that Xm = Xm+1 = · · · .

Proof: Let X = ∩∞i=1Xi. Then X is a closed subset of U and V = U \ X is a quasi
affine variety. Let Ui = U \ Xi. Then we have a covering V = ∪n

i=1Ui of V by open
sets Ui, where U1 ⊆ U2 ⊆ · · · ⊆ V . By Proposition 5.1.19 we can find a finite subcover
Ui1 , . . . , Uir . Let m = max{i1, . . . , ir}. Then Um = Um+1 = · · · = V , and we have that
Xm = Xm+1 = · · · = X. ¤
Definition 5.1.21. A topological space X is called noetherian if every sequence of closed
subspaces X ⊇ X1 ⊇ X2 ⊇ · · · is stationary, that is, for some positive integer m we have
that Xm = Xm+1 = · · · .
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We say that a topological space X is irreducible if it can not be written as a union of
two proper closed subsets.

Remark 5.1.22. A topological space is noetherian if and only if every family {Xi}i∈I of
closed sets has a minimal element, that is, an element that is not properly contained in
any other member of the family. Indeed, if every family has a minimal element, a chain
X ⊇ X1 ⊇ X2 ⊇ · · · has a minimal element Xm. Then Xm = Xm+1 = · · · . Conversely, if
X is noetherian and {Xi}i∈I is a family of closed sets, then we can construct, by induction
on m, a sequence of sets Xi1 ⊃ Xi2 ⊃ · · · ⊃ Xim , by taking Xi1 arbitrary, and, if Xim is not
minimal, choosing Xim+1 to be a proper subset contained in the family. Since the space is
assumed to be noetherian we must end up with a minimal element of the family.

Remark 5.1.23. A space X is clearly irreducible if and only if two nonempty open sets
of X always intersect. Consequently, if X is irreducible, then all open subsets of X are
irreducible.

Lemma 5.1.24. Let X be a noetherian topological space. Then we can write X as a union
X = X1 ∪ · · · ∪Xm, where X1, . . . , Xm are irreducible closed subsets of X, and no two of
these sets are contained in each other. The sets X1, . . . , Xm are unique, up to order.

Proof: We shall show that the family {Yi}i∈I of closed subsets of X for which the first
part of the lemma does not hold is empty. If not, it has a minimal element Yj since X is
noetherian. Then Yj can not be irreducible and hence must be the union of two proper
closed subsets. Each of these can, by the minimality of Yj, be written as a finite union
of irreducible closed subsets, and hence, so can Yj, which is impossible. Hence the family
must be empty, and hence X can be written as a finite union of closed irreducible subsets.
Cancelling the biggest of the sets when two of the ireeducible sets are contained in each
other we arrive at a decomposition of the type described in the first part of the lemma.

We shall show that the decomposition is unique. Assume that we have two decomposi-
tions X = X1 ∪ · · · ∪Xp = Y1 ∪ · · · ∪ Yq. Then Xi = (Xi ∩ Y1)∪ · · · ∪ (Xi ∩ Yq). Since Xi is
irreducible we have that, either the intersection Xi ∩ Yj is equal to Xi, or it is empty. At
least one of the intersections must be equal to Xi. Then we have that Xi ⊆ Yσ(i), for some
index σ(i). Reasoning in a similar way for Yσ(i), we obtain that Yσ(i) ⊆ Xj, for some index
j. But then we have that Xi ⊆ Yσ(i) ⊆ Xk. Consequently i = k and Xi = Yσ(i). Since the
latter relation must hold for all i, the second part of the lemma has been proved. ¤

Definition 5.1.25. Let R be a ring. An ideal I of R is prime if, given two elements a and
b of R, not in I, then the product ab is not in I.

Proposition 5.1.26. Let X be an affine variety in An
K
. Then X is irreducible if and only

if the ideal

I(X) = {f ∈ K[x1, . . . , xn] : f(a1, . . . , an) = 0, for all (a1, . . . , an) ∈ X}
of polynomials vanishing on X is a prime ideal in K[x1, . . . , xn].
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Proof: It follows from Lemma 5.1.14 that it suffices to prove that any two principal open
subsets intersect. Note that for f in K[x1, . . . , xn] we have that Xf ∩X 6= ∅ if and only if
f is not in I(X), because, for (a1, . . . , an) in Xf ∩X, we have that f(a1, . . . , an) 6= 0 and
g(a1, . . . , an) = 0, for all g in I(X). Let f and g in K[x1, . . . , xn] be polynomials not in
I(X), we have that fg is not in I(X) if and only if Xfg ∩X 6= ∅. Clearly, we have that
Xfg = Xf ∩Xg, so Xfg ∩X 6= ∅ if and only if (Xf ∩X)∩ (Xg ∩X) 6= ∅. Consequently, we
have that fg is not in I(X) if and only if (Xf ∩X) and (Xg ∩X) meet. We have proved
the proposition. ¤

Example 5.1.27. Since K is infinte (see Excercise 5.1.5) the only polynomial that vanishes
on An

K
is the zero polynomial. Consequently, we have that I(An

K
) = (0) in K[x1, . . . , xn],

and An
K

is irreducible.

Remark 5.1.28. The above results illustrate the difference between the Zariski topology
and the metric topology on An

R and An
C. In the Zariski topology all open sets are compact

and two open subsets always meet. In the metric topology, no open sets are compact (see
Proposition 3.9.2), and the space is Hausdorff (see Exercise 3.3.1), so two distinct points
always have open neighbourhoods that do not intersect.

Exercises
5.1.1. Let K[x] be the ring of polynomials in the variable x with coefficients in K. Let f(x) and
g(x) be polynomials in K[x]. Show that there are polynomials q(x) and r(x) with deg r(x) <
deg f(x), such that g(x) = q(x)f(x) + r(x).

Hint: Keep the polynomial f(x) fixed and use induction on the degree of g(x).

5.1.2. Show that every ideal I in the ring K[x] of polynomials in the variable x with coefficients
in K can be generated by one element.

Hint: Use Exercise 5.1.1 to prove that every polynomial of lowest degree in I will generate I.

5.1.3. Let K[x] be the ring of polynomials in the variable x with coefficients in K. Moreover let
f(x) be a polynomial. Show that an element a of K is a root of f(x), that is f(a) = 0, if and only
if f(x) = (x− a)g(x).

5.1.4. Let K[x] be the ring of polynomials in one variable x with coefficients in K. We say that a
polynomial f(x) divides a polynomial g(x) if there is a polynomial q(x) such that g(x) = q(x)f(x).
A polynomial is irreducible if it can not be divided by a nonconstant polynomial of strictly lower
degree than itself. Two polynomials are relatively prime if they have no common divisors except
the constants, that is, the elements of K.

(a) Use Exercise 5.1.2 to show that if f(x) and g(x) are relatively prime polynomials in K[x],
then K[x] is the smallest ideal that contains f(x) and g(x).

(b) Show that if f(x) and g(x) are polynomials, and f(x) is irreducible, then, either f(x) and
g(x) are relatively prime, or f(x) divides g(x).

(c) Let f(x), g(x), and h(x) be polynomials in K[x], with f(x) irreducible. Use assertion (a)
and (b) to show that, if f(x) divides g(x)h(x), but does not divide g(x), then f(x) divides
h(x).
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(d) Show that every polynomial f(x) can be written as a product f(x) = f1(x) · · · fm(x),
where the polynomials fi(x) are irreducible, not necessarily disinct, and use (c) to show
that the fi(x) are unique, up to order and multiplication with a constant.

(e) Show that there are infinitely many irreducible polynomials in K[x] that can not be
obtained from each other by multiplication by elements of K.

Hint: Assume that there is a finite number of irreducible polynomials f1(x), . . . , fm(x)
up to multiplication by constants. Show that each irreducible factor of (f1(x) · · · fm(x))+1
is relatively prime to f1(x), . . . , fm(x).

5.1.5. Let K be a field.
(a) Show that a K is algebraically closed if and only if all irreducible polynomials (see Exercise

5.1.4) in one variable x with coefficients in K are of degree 1.
(b) Use Exercise 5.1.4 (e) to show that an algebraically closed field has infinitely many ele-

ments.

5.1.6. Let K[x] be the ring of polynomials in one variable x with coefficients in K. Let f(x) be
a polynomial and I = (f(x)) the smallest ideal in K[x] containing f(x). Show that the residue
ring K[x]/I is a field, if and only if f(x) is irreducible.

Hint: Use Exercise 5.1.4 (a).

5.1.7. Let R be a ring and I and ideal in R. Show that a subset {ai}i∈I of R generates I if
and only if I consists of the sums b1ai1 + · · ·+ bmaim , for all finite subsets {i1, . . . , im} of I, and
elements b1, . . . , bm in R.

5.1.8. Show that every field has an algebraic extension which is algebraically closed.
Hint: Construct a field E1 that contains F and where all polynomials in F [x] of degree a least

1 have a root. In order to accomplish this choose for every polynomial f ∈ F [x] of degree at
least 1 a symbo Xf , and let F [S] be the polynomial ring having these symbols as variables. The
ideal I in F [S] generated by the elements f(Xf ) is not the whole ring, because then we would
have that g1f1(Xf1) + · · ·+ gnfn(Xfn) = 1 for some elements g1, . . . , gn in F [S]. However, these
equations involve only a finite number of variables Xf , and we can always find an extension E of
F with elements α1, . . . , αn such that f1(α1) = · · · = fn(αn) = 0. Let ϕ : F [X] → E be the map
sending the variable Xfi

to αi for i = 1, . . . , n and sending the remaining variables to 0. We get
1 = ϕ(g1f1(Xf1) + · · ·+ gnfn(Xfn)) = ϕ(g1)f1(α1) + · · ·+ ϕ(gn)fn(αn) = 0, which is impossible.
Hence I is not the whole ring.

Let M be a maximal ideal that contain I and let E′
1 = F [X]/M. The field F maps injectively

into the field E′
1. Replacing E′

1 by the set E1 = F ∪ (E1 \ imF ) and giving the latter set the field
structure given by the canonical bijection of sets E′

1 → E1 we have that E1 is a field containing
the field F . Every polynomial f in F [x] has a root in E1 since f(Xf ) maps to zero in F [x]/M.

Define inductively E1 ⊂ E2 ⊂ · · · such that every polynomial of degree at least 1 in En[x] has
a root in En+1, and let E be the union of these fields. Then E is clearly a field that contains
F . Every polynomial in E[x] has coefficients in En for some n, and consequently it has a root in
En+1 ⊆ E.

Let F be the algebraic closure of F in E. For each polynomial f in F [x] we have that f
has a root α in E. The element α is then algebraic over F , and consequently algebraic over
F (α1, . . . , αn) for some elements α1, . . . , αn in F . Consequently we have that α is algebraic over
F .

We have proved that F is an algebraic extension of F which is algebraically closed.
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5.2 Irreducibility of the matrix groups
Recall that a topological space is irreducible if two nonempty open subsets always inter-

sect (see Remark 5.1.23). Hence irreducible spaces are connected. For quasi affine varieties
it is therefore more interesting to check irreducibility than to check connectedness. In this
section we shall determine which of the matrix groups that are irreducible.
Lemma 5.2.1. Let Y be a topological space. Assume that for every pair of points x and y
of Y there is an irreducible topological space X and a continous map f : X → Y , such that
f(X) contains x and y. Then Y is irreducible.

Proof: Let U and V be open non-empty subsets of Y . Assume that U ∩ V = ∅. Choose
x in U and y in V , and let f : X → Y be a map such that x and y are in f(X). We then
have that f−1(U) and f−1(V ) are nonempty open sets of X that do not intersect. This
contradicts the irreducibility of X. Consequently each pair of open sets intersect and we
have that Y is connected. ¤
Proposition 5.2.2. We have that Gln(K) and Sln(K) are irreducible.

Proof: If follows from Proposition 1.5.2 that every element A of Gln(K) can be written
in the form A = Ei1,j1(a1) · · ·E(a) · · ·Ein,jn(an), where E(a) is the matrix 1.5.2.1. We
obtain a continous map f : Kn × (K \ 0) → Gln(K) such that the image of the point
(a1, . . . , an, a) is the matrix Ei1,j1(a1) · · ·E(a) · · ·Ein,jn(an). Clearly f(0, . . . , 0, 1) = In

and f(a1, . . . , an, a) = A. We have that Kn ×K \ 0 is an open subset (see 5.1.12) of the
irreducible set An+1

kropp = Kn×K (see 5.1.27). Hence Kn×K\0 is irreducible (see 5.1.23). It
follows from Lemma 5.2.1 that Gln(K) is irreducible. In the case of the groups Sln(K). We
have that a = 1 and we can use the map f : Kn → Sln(K) sending the point (a1, . . . , an) to
the matrix Ei1,j1(a1) · · ·Ein,jn(an). We conclude, as above, that Sln(K) is irreducible. ¤
Proposition 5.2.3. Let K be a field such that 2 6= 0 we have that SOn(K) is irreducible
and On(K) is not irreducible.

Proof: The determinant gives a surjective map det On(K) → {±1}. Since {±1} is not
irreducible when 2 6= 0 it follows from Lemma 5.2.1 that On(K) is not irreducible.

It follows from Proposition 1.9.4 that every element A in SOn(K) can be written in the
form A = sx1sy1 · · · sxmsym , for some m, with 〈xi, xk〉 6= 0 6= 〈yi, yi〉. Consider Kmn as the
space consisting of m vectors in Kn, that is as points (a1,1, . . . , a1,n, . . . , am,1, . . . , amn). Let
Ui be the open set in Kmn consisting of points x = (ai,1, . . . , ai,n) such that 〈x, x〉 6= 0. Then
∩m

i=1Ui is open and it is nonempty because K has infinitely many elements (see Exercise
3.3.1). We define a map γ : ∩m

i=1Ui → SOn(K) by γ(z1, . . . , zm) = sx1sz1 · · · sxmszm . Clearly
the map is continuous and we have that γ(x1, . . . , xm) = In and γ(y1, . . . , ym) = A. Since
∩m

i=1Ui is an open subset of Kmn it is follows from Example 5.1.27 and Remark 5.1.23 that
it is irreducible. It follows from Lemma 5.2.1 that SOn(K) is irreducible. ¤
Proposition 5.2.4. We have that Spn(K) is irreducible.
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Proof: It follows from Proposition 1.9.9 that every element A in Spn(K) can be written
in the form A = τ(x1, a1) · · · τ(xm, am), for some m. The map f : Kn → Spn(K) which is
defined by f(b1, . . . , bm) = τ(x1, b1) . . . τ(xm, bm) is clearly continous and maps (0, . . . , 0)
to In and (a1, . . . , am) to A. It follows from Lemma 5.2.1 that Spn(K) is irreducible. ¤

5.3 Regular functions
The only natural functions on affine varieties are functions induced by polynomials or

quotients of polynomials. We shall, in this section, define polynomial functions on quasi
affine varieties.

Definition 5.3.1. Let X be an affine variety in An
K
. Denote by

I(X) = {f ∈ K[x1, . . . , xn] : f(x) = 0, for all x ∈ X},
the set of polynomials in K[x1, . . . , xn] that vanish on X.

5.3.2. Since the sum of two polynomials that both vanish on X, and the product of a
polynomial that vanish on X with an arbitrary polynomial, vanish on X, we have that
I(X) is an ideal. This ideal has the property that, if f is a polynomial in K[x1, . . . , xn]
such that fm is in I(X), for some positive integer m, then f is in K[x1, . . . , xn]. Indeed,
if f(x)m = 0, for all x in X, then f(x) = 0, for all x in X. We say that the ideal I(X) is
radical.

Definition 5.3.3. Let R be a ring. For each ideal I of R we let
√

I = {a ∈ R|am ∈ I, for some positive integer m}.
We call

√
I the radical of I, and we say that the ideal I is radical if

√
I = I.

Remark 5.3.4. The radical of an ideal I contains I, and is itself an ideal. Indeed, if a
is in

√
I, then am is in I for some positive integer m. Hence, for all b in I, we have

that bmam = (ba)m is in I. Consequently ba is in
√

I. Moreover, if a and b are in
√

I,
then ap and bq are in I for some positive integers p and q. Let m = p + q − 1. Then
(a + b)m =

∑m
i=0

(
m
i

)
aibm−1. For i = 0, . . . , m, we have that, either i ≥ p or m− i ≥ q, and

consequently each term
(

m
i

)
aibm−i is in I. Hence (a + b)m is in I, and we have that a + b

is in
√

I.
We note that if I is a proper ideal of R, that is, if it is different from R, then

√
I is

proper. Indeed, the element 1 can not be in
√

I.

5.3.5. Let f be a polynomial in K[x1, . . . , xn]. We define a function
ϕf : An

K
→ K,

by ϕf (a1, . . . , an) = f(a1, . . . , an). For each affine subvariety X of An
K

we obtain by
restriction a function

ϕf |X : X → K.

Let g be another polynomial in K[x1, . . . , xn]. By the definition of the ideal I(X), we have
that ϕf |X = ϕg|X if and only if f − g is in I(X). It is therefore natural to consider the
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residue ring K[x1, . . . , xn]/I(X) of K[x1, . . . , xn] by the ideal I(X) (see Example 3.5.2) to
be the ring of polynomial functions on X.
Definition 5.3.6. Let X be an algebraic variety in An

K
. We denote the residue ring

K[x1, . . . , xn]/I(X) by K[X] , and call K[X] the coordinate ring of X. Let f be an
element of K[X]. We saw in Paragraph 5.3.5 that all the polynomials F in K[x1, . . . , xn]
whose residue is f take the same value F (x) at each point x of X. The common value we
denote by f(x). We say that f is the function induced by F , and define Xf to be the set
{x ∈ X | f(x) 6= 0}, or equivalently Xf = XF .
Example 5.3.7. We have that the coordinate ring K[An

K
] of the affine variety An

K
is equal

to K[x1, . . . , xn]. Indeed, the only polynomial that is zero on An
K
is 0 (see Example 5.1.27).

Definition 5.3.8. Let U be a quasi affine variety in An
K
. A function

ϕ : U → K

is regular if there, for every point x in U , exists a neighbourhood V of x contained in U and
polynomials f(x1, . . . , xm) and g(x1, . . . , xn) in K[x1, . . . , xn] such that g(a1, . . . , an) 6= 0

and ϕ(a1, . . . , an) = f(a1,...,an)
g(a1,...,an)

, for all (a1, . . . , an) in V .
Let V be a quasi affine variety in Am

K
. A map
Φ : U → V

is a regular map if there are regular functions ϕ1, . . . , ϕm on U such that
Φ(a1, . . . , an) = (ϕ1(a1, . . . , an), . . . , ϕm(a1, . . . , an)),

for all (a1, . . . , an) in U .
Example 5.3.9. Let U and V be quasi affine varieties in Am

K
respectively An

K
, and let

f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) be polynomials in K[x1, . . . , xn]. The map
Φ : U → Am

K

defined by
Φ(a1, . . . , an) = (ϕ1(a1, . . . , an), . . . , ϕm(a1, . . . , an))

is regular. If Φ(a1, . . . , an) is in V , for all (a1, . . . , an) in U , we have that Φ induces a
regular map

Φ|U : U → V.

Since the multiplication map Gln(K)×Gln(K) → Gln(K), is given by polynomials, it is a
regular map. Here Gln(K)×Gln(K) is the product of quasi affine varieties in An2

K
×An2

K
,

given in Example 5.1.12. It follows that the product maps of all the matrix groups Gln(K),
Sln(K), GS(K), or SGS(K), for some invertible matrix S, are regular maps.
Example 5.3.10. The inverse map Gln(K) → Gln(K) which sends a matrix A to A−1 is
regular. Indeed, we have that A−1 = 1

det A
B, where B is the adjoint matrix (see Section 1.4

and Exercise 1.4.2). Every coordinate of A−1 is a polynomial in the variables xij divided
by the polynomial det(xij), which is nonzero on all points of Gln(K). Consequently, the
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inverse map on Gln(K) is regular. It follows that the inverse map is regular for the matrix
groups Gln(K), Sln(K), GS(K), or SGS(K), for all invertible matrices S.

Example 5.3.11. Let f(x1, . . . , xn) be an element in the polynomial ring K[x1, . . . , xn],
and let X be an affine algebraic variety in An

K
. The map

Φ : Xf → V(1− xn+1f(x1, . . . , xn)),

defined by Φ(a1, . . . , an) = (a1, . . . , an,
1

f(a1,...,an)
), from the principal set Xf to the zeroes

in An+1

K
of the polynomial 1−xn+1f(x1, . . . , xn) in K[x1, . . . , xn+1], is regular, and is given

by the polynomials x1, . . . , xn,
1

f(x1,...,xn)
. The map

Ψ : V(1− xn+1f(x1, . . . , xn)) → Xf ,

given by Ψ(a1, . . . , an+1) = (a1, . . . , an) is also regular. The regular maps Φ and Ψ are
inverses.

Lemma 5.3.12. A regular map between quasi affine varieties is continous.

Proof: Let U and V be quasi affine varieties in An
K

respectively Am
K
, where V is an open

subset of an affine variety Y , and let Φ : U → V be a regular map. It follows from Lemma
5.1.14 that it suffices to prove that Φ−1(Yg) is open in U , for all polynomials g(y1, . . . , ym)
in the m variables y1, . . . , ym with coordinates in K, such that Yg is contained in V .

Let x be a point of Φ−1(Yg). Since Φ is regular there are open neighbourhoods Ui of x
in U and polynomials fi, gi in K[x1, . . . , xn], such that gi(a1, . . . , an) 6= 0, and such that
Φ(a1, . . . , an) =

(
f(a1,...,an)
g1(a1,...,an)

, . . . , fm(a1,...,an)
gm(a1,...,an)

)
, for all (a1, . . . , an) in Wx = ∩m

i=1Ui. Write

f(x1, . . . , xn) = g
(

f1(x1,...,xn)
g1(x1,...,xn)

, . . . , fm(x1,...,xn)
gm(x1,...,xn)

)
. For a sufficiently big integer d we have that

h(x1, . . . , xn) = (g1(x1, . . . xn) · · · gm(x1, . . . , xn))d f(x1, . . . , xn)

is a polynomial in x1, . . . , xn. We have that
(Φ|Wx)

−1(Yg) = Wx ∩ {(a1, . . . , an) : f(a1, . . . , an) 6= 0}
= Wx ∩ {(a1, . . . , an) : h(a1, . . . , an) 6= 0} = Wx ∩Xh.

Hence, for each x in U , the set Φ−1(Yg) contains an open subset Wx ∩ Xh containing x,
and hence it is open. ¤

5.4 The Hilbert Nullstellensatz
The most fundamental result about regular functions is that the ring of regular functions

on an affine algebraic set is canonically isomorphic to the coordinate ring. In order to prove
this result we shall need the Hilbert Nullstellensatz. The algebraic prerequisites that we
need to prove the Hilbert Nullstellensatz are quite extensive, and we have devoted the
next section to the prerequisites, and to a proof of a generalized version of the Hilbert
Nullstellensatz.
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5.4.1. In Section 5.1 we associated an affine variety V(I) of An
K

to every ideal I in
K[x1, . . . , xn]. Conversely, in Section 5.3 we saw how we can associate a radical ideal
I(X) to every affine variety of An

K
. For every affine variety we have that

VI(X) = X.

Indeed, the inclusion X ⊆ VI(X) is clear. To prove the opposite inclusion we take a point
x of An

K
\ X. Since X is an affine variety there is an ideal I of K[x1, . . . , xn] such that

X = V(I). Clearly, we have that I ⊆ I(X) and since x /∈ X, there is a polynomial f
in I such that f(x) 6= 0. Consequently, x is not in VI(X), and we have proved that the
inclusion VI(X) ⊆ X holds.

For every ideal I of K[x1, . . . , xn] it is clear that we have an inclusion
√

I ⊆ IV(I).

The Hilbert Nullstellensats asserts that the opposite inclusion holds. In particular we must
have that, if I is a proper ideal in K[x1, . . . , xn], then V(I) is not empty. Indeed, if V(I)
were empty, then IV(I) must be the whole of K[x1, . . . , xn]. However, if I is a proper
ideal, then so is

√
I (see Remark 5.3.4).

The Hilbert Nullstellensats states that, if f(x1, . . . , xn) is a polynomial in the ring
K[x1, . . . , xn] which vanishes on the common zeroes V(f1, . . . , fn) of a family of polyno-
mials f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), then there is a positive integer d and polynomials
g1, . . . , gm such that

fd = g1f1 + · · ·+ gmfm.

Indeed, let I be the ideal generated by the polynomials f1, . . . , fm. Let f be a polyno-
mial that vanishes on V(I), that is, the polynomial f is in IV(I). Then, by the Hilbert
Nullstellensatz f is in

√
I so that fd is in I for som positive integer d. That is, we have

fd = g1f1 + · · ·+ gmfm for some polynomials g1, . . . , gm.
The Hilbert Nullstellensats is a fundamental result in algebraic geometry and has many

uses. We shall therefore present a proof of a very useful generalization. Before we start
the proof we need some algebraic preliminaries.

Definition 5.4.2. An element a of a ring R is a zero divisor if there is a nonzero element
b in R such that ab = 0. We say that R is an integral domain if 0 is the only zero divisor
of R.

Definition 5.4.3. Let R be a ring. We say that a ring S is an R-algebra if R is a subring
of S. A homomorphism Φ : S → T of R algebras is a ring homomorphism which is the
identity on R.

Given an R algebra S and elements a1, . . . , an of S. Then there is a unique R algebra
homomorphism

Φ : R[x1, . . . , xn] → S,

from the ring of polynomials in the variables x1, . . . , xn with coefficients in R, such that
Φ(xi) = ai, for i = 1, . . . , n. We have that Φ(f(x1, . . . , xn)) = f(a1, . . . , an), for all polyno-
mials f(x1, . . . , xn) of R[x1, . . . , xn].
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The image of Φ is an R subalgebra of S that we denote by R[a1, . . . , an]. We call
R[a1, . . . , an] the R algebra generated by the elements a1, . . . , an. When S = R[a1, . . . , an],
we say that S is finitely generated, and that the elements a1, . . . , an are generators of the
R algebra S. By definition R[a1, . . . , an] consists of all elements of the form f(a1, . . . , an),
where f is a polynomial in R[x1, . . . , xn], and it is clearly the smallest R subalgebra of S
containing the elements a1, . . . , an.

Let S be an R algebra which is an integral domain. We say that an element a of S is
algebraic over R if there is a nonzero polynomial f(x) = amxm + · · ·+ a0, in the variable x
with coefficients in R, such that f(a) = 0. An element of S which is not algebraic is called
transcendental.
Lemma 5.4.4. Let R be an integral domain and let R[x] be the ring of polynomials in one
variable x with coefficients in R. Moreover, let f(x) = bxm + bm−1x

m−1 + · · · + b0 be a
polynomial with b 6= 0. For every polynomial g(x) of R[x] there is a nonnegative integer d
and polynomials q(x) and r(x), with deg r < deg f , such that

bdg(x) = q(x)f(x) + r(x).

Proof: The assertion of the Lemma holds for all polynomials g such that deg g < deg f .
Indeed, we can then take d = 0, q = 0 and r = g. We shall prove the lemma by induction on
the degree of g. Assume that the assertion of the lemma holds for all polynomials of degree
strictly less than p for some integer p ≥ deg f = m. Let g(x) = cxp+cp−1x

p−1+· · ·+c0. We
have that h(x) = bg(x)− cxp−mf(x) is of degree less than p. By the induction assumption,
we can find an integer d and polynomials q1 and r such that bdh(x) = q1(x)f(x) + r(x),
with deg r < deg f . Consequently we have that bd+1g(x) = bdh(x) + cbdxp−mf(x) =
(q1(x) + cbdxp−m)f(x) + r(x), and we have proved that the assertion of the lemma holds
for g(x). ¤
Remark 5.4.5. We note that an element a of an R algebra S which is an integral domain
is trancendental if and only if the surjection Φ : R[x] → R[a] is an isomorphism. Indeed,
the nonzero elements of the kernel of Φ consists of the nonzero polynomials f(x) such that
f(a) = 0. To determine the kernel of Φ when a is algebraic we choose a nonzero polynomial
f(x) = bxm + bm−1x

m−1 + · · ·+ b0 of smallest possible degree m such that f(a) = 0. Then
the kernel of Φ is equal to

{g(x) ∈ R[x] | bdg(x) = q(x)f(x),where d ∈ Z,with d > 0, and q(x) ∈ R[x]}.
Indeed, if bdg(x) = q(x)f(x) we have that bdg(a) = q(a)f(a) = 0, and hence that
g(a) = 0. Conversely, assume that g(a) = 0. It follows from Lemma 5.4.4 that bdg(x) =
q(x)f(x) + r(x), for some nonnegative integer d and polynomials q(x) and r(x) with
deg r(x) < deg f(x). We obtain that r(a) = bdg(a) − q(a)f(a) = 0. However, we have
chosen f to be a nonzero polynomial of lowest degree such that f(a) = 0. It follows that
r(x) = 0 in R[x], and consequently bdg(x) = q(x)f(x).
Proposition 5.4.6. Let R be a ring and S an R algebra which is an integral domain, and
let a be an element of S. Moreover, let T be an integral domain and ϕ : R → T a ring
homomorphism. Finally, let c be an element of T . The following two assertions hold:
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(i) Assume that a is transcendental over R. Then there exists a unique ring homomor-
phism ψ : R[a] → T such that ψ(a) = c, and ψ|R = ϕ.

(ii) Assume that a is algebraic and let f(x) = bxm +bm−1x
m−1 + · · ·+b0 be a polynomial

of lowest possible degree in the variable x with coefficients in R such that f(a) = 0.
If ϕ(b) 6= 0 and ϕ(b)cm + ϕ(bm−1)c

m−1 + · · · + ϕ(b0) = 0, there exists a unique
homomorphism ψ : R[a] → T such that ψ(a) = c and ψ|R = ϕ.

Proof: Let ψ : R[a] → T be a ring homomorphism such that ψ(a) = c, and ψ|R = ϕ. For
every element g(a) = cpa

p + · · · + c0 of R[a] we have that ψ(g(a)) = ψ(cpa
p + · · · + c0) =

ψ(cpa
p) + · · · + ψ(c0) = ψ(cp)ψ(a)p + · · · + ψ(c0) = ϕ(cp)ψ(a)p + · · · + ϕ(c0) = ϕ(cp)c

p +
· · ·+ϕ(c0). Hence ψ is uniquely determined by the conditions that ψ(a) = c, and ψ|R = ϕ.

Assume that a is transcendental. Then every element of R[a] has an expression g(a) =
cpa

p + · · ·+c0, where p, and c0, . . . , cp are uniquely determined. Hence we can define a map
ψ : R[a] → T by ψ(g(a)) = ϕ(cp)c

p + · · ·+ ϕ(c0). Clearly, ψ is a ring homomorphism such
that ψ(a) = c, and ψ|R = ϕ. Hence we have proved the first assertion of the proposition
when a is trancendental.

Assume that a is algebraic. Then every element of R[a] can be written in the form g(a) =
cpa

p + · · ·+ c0, for some polynomial g(x) = cpx
p + · · ·+ c0 in the variable x with coefficients

in R. Let h(x) = dqx
q + · · ·+d0. It follows from Remark 5.4.5 that g(a) = h(a) if and only

if bd(g(x)−h(x)) = q(x)f(x), for some nonnegative integer d, and some polynomial q(x) in
R[x]. Hence we can define a map ψ : R[a] → T by ψ(era

r + · · ·+e0) = ϕ(er)c
r + · · ·+ϕ(e0),

if we can prove that be(erx
r + · · · + e0) = p(x)f(x), for some nonegative integer e and

some polynomial p(x) = fsx
s + · · · + f0 implies that ϕ(er)c

r + · · · + ϕ(e0) = 0. Assume
that be(erx

r + · · · + e0) = p(x)f(x). We use ϕ on the coefficients of the monomials xi in
both sides of be(erx

r + · · · + e0) = p(x)f(x), and substitute c for x. Then we obtain that
ϕ(b)e(ϕ(er)c

r+· · ·+ϕ(e0)) = (ϕ(fs)c
s+· · ·+ϕ(f0))(ϕ(b)cm+ϕ(bm−1)c

m−1+· · ·+ϕ(b0)) = 0.
Since ϕ(b) 6= 0 by assumption, and T is an integral domain by assumption, we obtain that
ϕ(er)c

r + · · ·+ ϕ(e0) = 0. Thus we have proved that we can define a map ψ : R[a] → T by
ψ(era

r + · · ·+ e0) = ϕ(er)c
r + · · ·+ϕ(e0). We clearly have that ψ is a ring homomorphism,

that ψ(a) = c, and that ψ|R = ϕ. ¤

Lemma 5.4.7. Let S be an R algebra which is an integral domain. Let a be an element of
S which is algebraic over R and let f(x) = bxm + bm−1x

m−1 + · · · + b0 be a polynomial of
smallest possible degree m such that f(a) = 0. For all polynomials g(x) such that g(a) 6= 0
there exists polynomials p(x) and q(x) such that

p(x)f(x) + q(x)g(x) = c,

where c is a non zero element c of R.

Proof: Let r(x) be a nonzero polynomial of the lowest possible degree such that p(x)f(x)+
q(x)g(x) = r(x) for some polynomials p(x) and q(x), and such that r(a) 6= 0. Such a
polynomial exists since it follows from Lemma 5.4.4 that we can find a non negative integer



The Hilbert Nullstellensatz 119

d, and polynomials s(x) and q(x) such that deg s < deg f and such that −q(x)f(x) +
adg(x) = s(x). Here s(a) = −q(a)f(a) + adg(a) = adg(a) 6= 0.

We shall show that r(x), in fact, has degree 0. Assume that deg r > 1, and write
r(x) = cxq + cq−1x

q−1 + · · · + c0, with c 6= 0 and q > 1. It follows from Lemma 5.4.4 that
we can write cdf(x) = q1(x)r(x) + r1(x), for some nonnegative integer d and polynomials
q1(x) and r1(x), with deg r1 < deg r. We have that r1(a) 6= 0 because, if r1(a) = 0, then
0 = cdf(a) = q1(a)r(a) + r1(a) = q1(a)r(a), and hence either q1(a) = 0 or r(a) = 0.
However, since deg f > deg r ≥ 1, both q1(x) and r(x) have lower degree than f and can
not be zero at a because f(x) is chosen of mininal degree such that f(a) = 0. We have
that

r1(x) = cdf(x)− q1(x)r(x) = cdf(x)− q1(x)p(x)f(x)− q1(x)q(x)g(x)

=
(
cd − q1(x)p(x)

)
f(x)− q1(x)q(x)g(x).

The last equation, together with the observation that r1(a) 6= 0 contradicts the minimality
of the degree of r(x). Hence we can not have that deg r ≥ 1, and we have proved the
lemma. ¤

Theorem 5.4.8. Let R be a ring and S an R algebra which is an integral domain. Moreover
let a1, . . . , an be elements in S, and b be a nonzero element of R[a1, . . . , an]. Then there is
an element a in R such that, for every ring homomorphism ϕ : R → K such that ϕ(a) 6= 0
there is a ring homomorphism ψ : R[a1, . . . , an] → K such that ψ(b) 6= 0, and such that
ψ|R = ϕ.

Proof: We shall prove the theorem by induction on the number n of generators a1, . . . , an

of R[a1, . . . , an−1]. Let R′ = R[a1, . . . , an]. Then R′[an] = R[a1, . . . , an]. We shall first
prove the theorem with R′ and R′[an], for R and S. In particular we prove the theorem
for the case n = 1.

Assume first that an is transcentdental over R′. Then b = a′ap
n + fp−1a

p−1
n + · · · + f0,

for some elements a′, fp−1, . . . , f0 of R′. For every homorphism ϕ′ : R′ → K such that
ϕ′(a′) 6= 0, we choose an element c of K such that ϕ′(a′)cp +ϕ′(fp−1)c

p−1 + · · ·+ϕ′(f0) 6= 0.
This is possible because K is infinite (see Exercise 5.1.5), so that there are elements of
K that are not roots in the polynomial ϕ′(a′)xp + ϕ′(fp−1)x

p−1 + · · · + ϕ′(f0). It follows
from the first assertion of Proposition 5.4.6 that there is a unique ring homomorphism
ψ : R′[an] → K such that ψ(an) = c. We have that ψ(b) = ψ(a′ap

n + fp−1a
p−1
n + · · ·+ f0) =

ϕ′(a′)ψ(an)p+ϕ′(fp−1)ψ(an)p−1+· · ·+ϕ′(f0) = ϕ′(a′)cp+ϕ′(fp−1)c
p−1+· · ·+ϕ′(f0) 6= 0, and

ψ|R′ = ϕ′, and we have proved the case n = 1 of the theorem when an is transcentdental.
Assume that an is algebraic over R′. Let f(x) = cxm+bm−1x

n−1+· · ·+b0 be a polynomial
in x with coefficients in R′ of lowest degree m such that f(am) = 0. There is a polynomial
g(x) = cpx

p+· · ·+c0 such that b = g(an) 6= 0. It follows from Lemma 5.4.7 that we can find
polynomials p(x) and q(x) in R′[x] such that p(x)f(x)+ q(x)g(x) = d is a nonzero element
of R′. Let a′ = cd, and let ϕ′ : R′ → K be a ring homomorphism such that ϕ′(a′) 6= 0.
Then ϕ′(c) 6= 0. Since K is algebraically closed we can find a root e in K of the polynomial
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ϕ′(c)xm + ϕ′(bm−1)x
m−1 + · · · + ϕ′(b0). It follows from part two of Proposition 5.4.6 that

there is a ring homomorphism ψ : R′[an] → R′ such that ψ(an) = e, and ψ|R′ = ϕ′. We
have that ψ(q(an))ψ(g(an)) = ψ(q(an)g(an)) = ψ(q(an)g(an)+p(an)f(an)) = ψ(d) = ϕ′(d),
which is not zero because ϕ′(a′) = ϕ′(cd) 6= 0. Hence we have that ψ(g(an)) 6= 0 and we
have proved the case n = 1 of the theorem when an is algebraic.

We have proved the theorem in the case n = 1 and proceed by induction on n. Assume
that the theorem holds for an algebra with n − 1 generators. We use the induction as-
sumption on the R algebra R′ = R[a1, . . . , an−1] and the element a′ of R[a1, . . . , an−1], used
above. By the theorem we can find an element a of R such that every ring homomorphism
ϕ : R → K such that ϕ(a) 6= 0 can be extended to a ring homomorphsim ϕ′ : R′ → K such
that ϕ′(a′) 6= 0, and such that ϕ′|R′ = ϕ. However, we have from the case n = 1 above
that there is a ring homorphism ψ : R[a1, . . . , an] → R such that ψ(b) 6= 0, and such that
ψ|R′ = ϕ′. We have that ψ|R = ϕ′|R = ϕ, and we have proved the theorem. ¤

The Hilbert Nullstellensatz is a direct consequence of Theorem 5.4.8. In order to deduce
the Hilbert Nullstellensatz from the Theorem it is however, convenient to use another
characterization of the radical of an ideal, that illustrates why the radical is an ideal.
Lemma 5.4.9. Let R be a ring and let I be an ideal of R. The radical of I is the intersection
of all prime ideals in R that contain I.

Proof: Let P be a prime ideal containing I. If a is in
√

I we have that am is in I, and
hence in P , for some positive integer m. Since P is prime it follows that either a or am−1

is in P . By descending induction on m it follows that a is in P . Consequently, the radical
of I is contained in the intersection of the primes containing I.

Conversely, let a be an element of R that is not contained in the radical of I. We shall
show that there is a prime ideal containing I, but not a. Let {Ii}i∈I be the family of ideals
in R that contain I and that do not contain any power 1, a, a2, . . . of a. Given any chain
of ideals {Ii}i∈J , that is a subset of the family {Ii}i∈I , such that Ii ⊆ Ij or Ij ⊆ Ii for
all i and j in J . We have that ∪i∈J Ii is an ideal that contains I and does not contain
any power of a. Since every chain contains a maximal element the family {Ii}i∈I contains
a maximal element J (see Remark 5.4.10). We shall show that J is a prime ideal. Let
b and c be elements of R that are not in J . The smallest ideals (b, J) and (c, J) that
contain b and J , respectively c and J must contain a power of a, by the maximality of J .
Consequently, bb′ + i = ap and cc′ + j = aq, for some elements b′ and c′ of R and i and j
of J . We take the product of the left and right hand sides of these expressions and obtain
that b′c′bc + cc′i + bb′j + ij = ap+q. Since cc′i + bb′j + ij is in J , we obtain that, if bc were
in J , then ap+q would be in J , contrary to the assumption. Consequently, we have that bc
is not in J , and J is prime. Thus, for every element a in R not contained in the radical
of I we have a prime ideal J containing I, but not a. Hence the intersection of all prime
ideals containing I is contained in the radical. ¤
Remark 5.4.10. In the proof or Lemma 5.4.9 we used Zorn’s Lemma stating that, if every
chain in a family {Ii}i∈I of sets has a maximal element, then the family itself has maximal
elements. For noetherian rings we can avoid the use of Zorn’s Lemma by noting that a ring
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R is noetherian, if and only if, every sequence I1 ⊆ I2 ⊆ · · · of ideals is stationary, that is
Im = Im+1 = · · · , for some positive integer m. To prove this equvialence we first assume
that R is noetherian and consider a sequence I1 ⊆ I2 ⊆ · · · of ideals. Let I = ∪∞i=1Ii. Then
I is an ideal, and thus generated by a finite number of elements a1, . . . , ap. Clearly we must
have that all the generators must be in one of the ideals in the sequence, say Im. Then we
have that Im = Im+1 = · · · = I, and the sequence is stationary. Conversely, assume that
every sequence is stationary. Given an ideal I of R and let {ai}i∈I be a set of generators.
Choose ideals I1 ⊂ I2 ⊂ · · · , where Ip is generated by ai1 , . . . , aip , by induction as follows:

We take I1 to be the ideal generated by one of the generators ai1 . Assume that we have
chosen Ip, then, if Ip 6= I, we choose a generator aip+1 that is not in Ip, and let Ip+1 be the
ideal generate by ai1 , · · · , aip+1 . Since, the chain must stop, by assumption, we must have
that I = Im, for some m, and thus that I is generated by ai1 , . . . , aim .

Theorem 5.4.11. (The Hilbert Nullstellensatz)Let I be a proper ideal in the polynomial
ring K[x1, . . . , xn]. Then

√
I = IV(I).

Proof: We observed in Paragraph 5.4.1 that
√

I ⊆ IV(I). To prove that the opposite
inclusion holds, we take an element a not in

√
I and shall find a point x in V(I) such that

a(x) 6= 0. From the alternative description of the radical of Lemma 5.4.9 we can find a
prime ideal P of K[x1, . . . , xn] which contains I and does not contain a. We have that
the K algebra S = K[x1, . . . , xn]/P is an integral domain (see Exercise 5.5.1). Let g be
the image of a in S by the residue map χ : K[x1, . . . , xn] → S. Then g 6= 0. It follows
from Theorem 5.4.8 with K = R and ϕ being the inclusion K ⊆ K, that there is a K
algebra homomorphism ψ : S → K such that ψ(g) 6= 0. Let ai be the image of xi by
the composite ζ : K[x1, . . . , xn] → K of the residue map χ and ψ, for i = 1, . . . , n. Then
(a1, . . . , an) is a point in An

K
. For each polynomial f(x1, . . . , xn) =

∑
i1,...,in

ai1...inxi1
1 · · ·xin

n

in K[x1, . . . , xn] we have that ζf(x1, . . . , xn) =
∑

i1,...,in
ai1...inai1

1 · · · ain
n = f(a1, . . . , an).

When f(x1, . . . , xn) is in I we have that it is in P , and hence that χ(f(x1, . . . , xn)) = 0.
Consequently we have that ζ(f) = 0, that is f(a1, . . . , an) = 0, or equivalently, (a1, . . . , an)
is a zero for f . Hence we have that (a1, . . . , an) is in V(I). However, ψ(g) 6= 0, so
a(a1, . . . , an) = ζ(a(x1, . . . , xn)) = ψχ(a(x1, . . . , xn)) = ψ(g) 6= 0. Hence, we have found a
point x = (a1, . . . , an) in An

K
which is a zero for I, and such that a(x) 6= 0, and we have

proved the theorem. ¤

5.5 Prevarieties
A manifold is a topological space that locally looks like an open subset of Kn, for some

n, when K is the field of real or complex numbers. Analogously we define, in this section,
prevarieties over arbitrary fields K as topological spaces that locally look like quasi affine
varieties.

Definition 5.5.1. Let X be a topological space. An algebraic chart of X consists of an open
set U of X, an open quasi affine variety V in some affine space An

K
, and a homeomorphism

ϕ : V → U of topological spaces. A family of algebraic charts {(ϕi, Vi, Ui)}i∈I is called an
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algebraic atlas if the open sets {Ui}i∈I cover X and if the map ϕ−1
j ϕi : ϕ−1

i (Ui ∩ Uj) →
ϕj(Ui ∩Uj) is regular, when Ui ∩Uj is nonempty, for all indices i and j in I. Here, and in
the following, we write, for simplicity, ϕ−1

j ϕi for the map (ϕj|(Ui ∩ Uj))
−1ϕi|ϕ−1

i (Ui ∩ Uj).
The set ϕ−1

i (Ui ∩ Uj) where ϕ−1
j ϕi is defined will be clear from the context.

A compact topological space X together with an algebraic atlas is called an algebraic
prevariety, or simply a prevariety. It is often convenient to include in the atlas all the
homeomorphisms ϕ : V → U , from an open quasi affine set in some An

K
to an open subset

in X, such that, for all x ∈ U and some Ui in the chart that contain x, the homeomorphism
ϕ−1

i ϕ is regular on ϕ−1(U ∩Ui). The condition then holds for all charts containing x. Such
a maximal chart is called an algebraic structure.

For each open subset U of X the charts ϕi : ϕ−1
i (U ∩ Ui) → U ∩ Ui define a structure as

an algebraic prevariety on U , called the induced structure.

Example 5.5.2. The quasi affine varieties are themselves algebraic prevarieties with the
identity map as a chart. In particular, all the matrix groups Gln(K), Sln(K), GS(K), or
SGS(K) for some invertible matrix S, are algebraic prevarieties (see Example 5.1.6).

Example 5.5.3. Let S = K
n+1 \ (0). Defining (a0, . . . , an) and (b0, . . . , bn) to be related,

if there is an a of K such that ai = abi, for i = 0, . . . , n, we obtain a relation on S. This
relation clearly is an equivalence relation. The set (K

n+1 \ (0))/ ≡ is denoted Pn
K
, and is

called the projective space of dimension n over K. We have a canonical map

Φ : K
n+1 → Pn

K
,

and write Φ(a1, . . . , an) = (a1; . . . ; an).
The sets U in Pn

K
such that Φ−1(U) is open in the Zariski topology on K

n+1, are the
open sets in a topology on Pn

K
. By definition, the map Φ is continuous with respect to this

topology and the Zariski topology on K
n.

For i = 0, . . . , n we denote by Hi the subset of Pn
K

consisting of points of the form
(a0; . . . ; ai−1; 0; ai+1; . . . ; an). Then Hi is closed in the topology. Let Ui = Pn

K
\Hi. Then

the sets Ui, for i = 0, . . . n, form an open covering of Pn
K
. Let

ϕi : An
K
→ Pn

K

be the map defined by ϕi(a1, . . . , an) = (a1; . . . ; ai−1; 1; ai; . . . ; an). Then ϕi is a homeomor-
phism of An

K
onto the open subset Ui of Pn(K). We have that the map ϕ−1

j ϕi is defined on
the set ϕ−1

i (Ui ∩ Uj) and is given by ϕ−1
j ϕi(a1, . . . , an) = (a1

aj
, . . . ,

aj−1

aj
,

aj+1

aj
, . . . , an

aj
), where

aj 6= 0 because ϕi(a1, . . . , an) is in Ui ∩Uj. Hence the map is regular. We see that (Ui, ϕi),
for i = 0, . . . , n, define an algebraic chart on Pn

K
, which makes Pn

K
into a prevariety.

Remark 5.5.4. Since every quasi affine variety is compact by Paragraph 5.1.19, we have
that X is a prevariety if and only if there is an atlas consisting of a finite number of charts.
Hence the condition that a prevariety is compact is not a serious restriction.

Note that an algebraic prevariety is covered by quasi affine subsets of some space An
K
.

Such a quasi algebraic subset will also be quasi algebraic in any space Am
K

such that An
K
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is contained in Am
K

as a closed subset. Hence the numbers n that appear in the definition
of an algebraic prevariety are not determined by the algebraic prevariety. We shall later
define the dimension of an algebraic prevariety.

Definition 5.5.5. Let X be an algebraic prevariety and U an open subset. A function
f : U → K is regular if for every x in U and some chart ϕi : Vi → Ui, such that x is
contained in Ui, we have that the map ϕϕ−1

i is regular on ϕ−1
i (U ∩Ui). The condition then

holds for all such charts. We denote by OX(U) the set of all regular functions on U .

Remark 5.5.6. The set OX(U) is clearly a ring, and for an open subset V of X contained
in U there is a natural ring homomorphism ρU,V : OX(U) → OX(V ) mapping a function f
to its restriction f |V . The following two fundamental properties hold:

(i) If f ∈ OX(U) and there is an open cover {Ui}i∈I of U such that ρU,Ui
(f) = 0, for

all i ∈ I, we have that f = 0.
(ii) If {Ui}i∈I is an open covering of U and {fi}i∈I is a collection of functions fi ∈

OX(Ui) such that ρUi,Ui∩Uj
(fi) = ρUj ,Ui∩Uj

(fj), for all i and j, there is a function
f ∈ OX(U) such that ρU,Ui

(f) = fi, for all i ∈ I.
Consequently OX is a sheaf on X (see Remark 3.4.9).

Example 5.5.7. Let X be a prevariety and x a point of X. Let S be the set consisting
of pairs (U, f), where U is an open neighbourhood of x and f a regular function on U .
We give a relation on S by defining (U, f) to be related to (V, g) if there is an open
neighbourhood W of x, contained in U ∩ V such that f |W = g|W . Clearly this relation is
an equivalence relation. The residual set S/ ≡ is denoted by OX,x. The elements of OX,x

can be added and multiplied by the rules [(U, f)] + [(V, g)] = [(U ∩ V, (f + g)|U ∩ V )] and
[(U, f)][(V, g)] = [(U ∩V, (fg)|U ∩V )]. Clearly OX,x becomes a ring with this addition and
multiplication, zero being the element [(X, 0)] and the unity the element [(X, 1)].

For every open neighbourhood U of x we obtain a ring homomorphism
OX(U) → OX,x,

mapping (U, f) to [(U, f)]. The ring OX,x is called the ring of germs of regular functions
at x. We also have a ring homomorphism

OX,x → K, (5.5.7.1)
mapping [(U, f)] to f(x). This map is called the augmentation map at x.

Remark 5.5.8. Let U be an open neighbourhood of x. Then we have that the natural
restriction map

OX,x → OU,x

is an isomorphism.

Given a map Φ : Y → X of prevarieties, we have a natural ring homomorphism
Φ∗x : OX,f(x) → OY , x (5.5.8.1)

defined by Φ∗x[(U, g)] = [(Φ−1(U), gΦ)].
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Definition 5.5.9. Let X and Y be prevarieties and Φ : Y → X a continous map. We
say that Φ is a morphism if, for every open subset U of X and every regular function
f : U → K on U , we have that fΦ is regular on Φ−1(U). When Φ has an inverse, which is
also a morphism, we say that Φ is an isomorphism of prevarieties.
Remark 5.5.10. It follows immediately from the definition that if Ψ : Z → Y is another
morphism of prevarieties, then ΦΨ : Z → X is also a morphism.

Let X be a topological space and U an open subset. We denote by CX(U) the ring og
all continous functions U → K. It follows from Lemma 5.3.12 that, if X is a prevariety,
the ring OX(U) is a subring of CX(U), for all open subsets U of X. A continous map
Φ : Y → X of topological spaces induces, for all open subsets U of X, a ring homomorphism
CX(U) → CY (Φ−1(U)), which maps a function g : U → K to the composite gΦ : Φ−1(U) →
K. When X and Y are prevarieties, this map is a morphism if and only if it induces a
map Φ∗(U) : OX(U) → OY (Φ−1(U)), on the subrings of regular functions. Clearly Φ∗(U)
is a ring homomorphism and, when V is an open subset of U , we have that Φ∗(V )ρU,V =
ρΦ−1(U),Φ−1(V )Φ

∗(U).
Remark 5.5.11. When U and V are quasi affine varieties a map Φ : V → U is a morphism if
and only if it is regular. Indeed, if Φ is regular, then, for every regular function f : V → K
we have that fΦ : U → K is regular. Consequently Φ is a morphism. Conversely, let
Φ : V → U be a morphism, and assume that V is a quasi affine variety in An

K
. Then

the restriction to U of the coordinate functions xi : An
K
→ K, that maps (a1, . . . , an) to

ai, is regular. Hence, the composite map xi|U : V → K is regular. Let fi = (xi|U)Φ, for
i = 1, . . . , n. We have that fi(b1, . . . , bn) = (xi|U)Φ(b1, . . . , bn). Consequently we have that
Φ(b1, . . . , bm) = (f1(b1, . . . , bn), . . . , fn(b1, . . . , bm)), and Φ is regular.
Example 5.5.12. Let X be an affine algebraic variety An

K
, and let f(x1, . . . , xn) be a

polynomial in K[x1, . . . , xn]. We saw in Example 5.3.11 that the map
Φ : Xf → V (1− xn+1f(x1, . . . , xn))

defined by Φ(a1, . . . , an) = (a1, . . . , an,
1

f(a1,...,an)
) is an isomorphism of the quasi affine

variety Xf of An
K
, with the affine variety V(1− xn+1f(x1, . . . , xn)) of An+1

K
.

In particular it follows from Lemma 5.1.14 that a prevariety can be covered by open
subsets that are affine varieties.

A fundamental result, that we shall prove next, is that there is a natural isomorphism
between the coordinate ring of an affine variety, and the ring of regular functions on the
variety. Although it is not necessary for the proof, or for the apparent generalization given
below, it is extremely convenient to introduce the localization of a ring with respct to
multiplicatively closed subsets.
Definition 5.5.13. Let R be a ring. We call a subset S multiplicatively closed, if ab is in
S, for all pairs of elements a, b in S. Let S be a multiplicatively closed subset and let R×S
be the set of pairs (a, b), with a in R and b in S. We say that two pairs (a, b) and (c, d)
in R× S are related, if ead = ebc, for some element e of S. This relation is an equivalence
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relation. Indeed, it is clearly reflexive and symmetric. To prove that it is transitive, let
(f, g) be an element related to (c, d). Then there is an element h of S such that hfd = hcg.
We obtain that hedag = hebcg = hedbf , where h, e and d, and thus hed, are contained
in S. Consequently, (a, b) is related to (f, g). We denote by S−1R the set of equivalence
classes. The class in S−1R of the pair (a, b) in R× S we denote by a

b
.

We define addition and multiplication of elements in S−1R by the formulas:
a

b
+

c

d
=

ad + bc

bd
, and a

b

c

d
=

ac

bd
.

It is easily checked that these operations are well defined, that is, they are independent of
the representative we chose of each equivalence class, and that S−1R, with these operations
become a ring with 0 and 1 given by 0

a
, respectively a

a
, for any a in S. Moreover, we have

a natural ring homomorphism
R → S−1R,

which maps a to ab
b
, for any b in S. The homomorphism is not always injective. For

example, if the zero element is in S, then S−1R = 0, because (a, b) is equivalent to (0, 0),
for all a in R and b in S. We call the ring S−1R the localization of R with respect to the
multiplicatively closed subset S.

Let a be an element of R, and let S = {1, a, a2, . . . }. Clearly S is multiplicatively closed.
In this case we let S−1R = Ra. The map R → Ra is injective if and only if there does not
exist a nozero element b in R such that amb = 0, for some positive integer m. It follows,
by descending induction on m, that the condition holds if and only if there is no element
b of R such that ab = 0.

Let P be a prime ideal of R. By the definition of a prime ideal, the set S = R \ P is
multiplicatively closed. We let S−1R = RP .

Let S be the set of non zero divisors of R. Then S is multiplicatively closed. Indeed, if
a and b are not zero divisors, and c is a nonzero element such that abc = 0, then, either
bc = 0, in which case b is a zero divisor, or bc 6= 0, and then a(bc) = 0, in which case a is a
zero divisor. Hence ab is not a zero divisor. We denote the resulting ring S−1R by K(R)
and call K(R) the total quotient ring of R. The map

R → K(R)

is injective because, if a is an element that maps to a
1

= 0, then there is a nonzero divisor b
such that ba = 0. Consequently we have that a = 0. When R is an integral domain, then
K(R) is a field. Indeed, the inverse of a nonzero element a

b
of K(R) is b

a
.

Definition 5.5.14. Let X be an affine variety. For every nonzero element f in the coor-
dinate ring K[X] we have a natural map

K[X]f → OX(Xf ),

which maps a quotient g
fm in K[X]f to the function Xf → K, which maps the point x to

g(x)
f(x)m .
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For each point x of X we have a K algebra homomorphism

K[X] → K, (5.5.14.1)

which sends an element f to f(x). We call this map the augmentation at x. Let

MX,x = {f ∈ K[X] : f(x) = 0}
be the kernel of the augmentation at x. It is clear that MX,x is a prime ideal. It is also
maximal, because if I were an ideal strictly containing MX,x then it follows from Hilberts
Nullstellensatz that I has a zero, this zero must then be x. Thus I must be the radical of
MX,x, and thus I = MX,x, since MX,x is prime.

We have a natural map
K[X]MX,x

→ OX,x,

which sends a quotient f
g
in K[X]MX,x

, to the class of the function Xg → K that sends a
point x to f(x)

g(x)
.

Proposition 5.5.15. Let X be an affine variety. For every element f in K[X], and point
x of X the maps K[X]f → OX(Xf ), and K[X]MX,x

→ OX,x, are isomorphisms.

Proof: We first show that the map K[X]f → OX(Xf ) is injective. Assume that a quotient
g

fm maps to zero in OX(Xf ). Then g(x) = 0 for x in Xf . However, then fg(x) = 0 for all x

in X. That is fg = 0 in K[X]. Hence g
f

= 0 in K[X]f . The proof that K[X]MX,x
→ OX,x

is injective is similar.
We next show that the map K[X]f → OX(Xf ) is surjective. Let X be a closed subset

of An
K
, and let s be an element in OX(Xf ). By definition there is an open covering

Xf = ∪i∈IUi of Xf by open sets Ui, and polynomials fi and gi in K[x1, . . . , xn] such that
gi(x) 6= 0, and s(x) = fi(x)

gi(x)
, for x in Ui. It follows from Lemma 5.1.14 that, refining the

covering if necessary, we may assume that Ui = Xhi
, for some hi in K[x1, . . . , xn]. Since the

sets Ui = Xhi
cover Xf we have that, if f(x) 6= 0, for some x in X, there is an index i in I

such that hi(x) 6= 0, or equvalently gi(x)hi(x) 6= 0. That is, if (gihi)(x) = 0, for all i in I,
then f(x) = 0. It follows from the Hilbert Nullstellensatz, applied to the ideal generated
by the elements gihi, that there is a finite subset i1, . . . , ir of I, elements k1, . . . , kr of
K[x1, . . . , xn], and a nonnegative integer m, such that

fm = gi1hi1k1 + · · ·+ girhirkr.

Let
g = fi1hi1k1 + · · ·+ firhirkr.

For each point x in Xf there is an index j such that hij(x) 6= 0. We obtain that

g(x) =
fij(x)

gij(x)
gi1(x)hi1(x)k1(x) + · · ·+ fij(x)

gij(x)
gir(x)hir(x)kr(x).
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Indeed, on the one hand we have that , if x is in Xhil
, then s(x) =

fij
(x)

gij
(x)

=
fik

(x)

gik
(x)

, such that
fij

(x)

gij
(x)

gil(x)hil(x)kl(x) = fil(x)hil(x)kl(x), and, on the other hand, if x is not in Xgil
, then

hil(x) = 0, such that fil(x)hil(x)kl(x) = 0 =
fij

(x)

gij
(x)

gil(x)hil(x)kl(x). Consequently we have
that

g(x) =
fij(x)

gij(x)
(gi1(x)hi1(x)k1(x) + · · ·+ gir(x)hir(x)kr(x)) =

fij(x)

gij(x)
fm(x).

We have proved that f(x)
gm(x)

= s(x), for all x in X, and consequently, that the map K[X]f →
OX(Xf ) is surjective.

To show that the map K[X]MX,x
→ OX,x is surjective it suffices to observe that an

element of OX,x, comes from an element of OX(Xf ), for some neighbourhood Xf of x.
However, the latter element comes from an element of K[X]f , by what we just proved, and
the last element clearly maps onto the first by the map K[X]MX,x

→ OX,x. ¤
Remark 5.5.16. We note that with f = 1 we obtain, from Proposition 5.5.15, a natural
isomorphism K[X] → OX(X), for all affine varieties X. Given a morphism Φ : Y → X, the
map OX(X) → OY (Y ) on regular functions, give a natural homomorphism Φ∗ : K[X] →
K[Y ] of K algebras.

The next result gives the fundamental connection between algebra and geometry on
which algebraic geometry rests.

Proposition 5.5.17. Let X be an affine variety and Y a prevariety. The correspondence
that to a morphism

Φ : Y → X

associates the K algebra homomorphism
Φ∗ : K[X] → OY (Y ),

obtained by composing the isomorphism K[X] → OX(X) of Proposition 5.5.15 with the
natural map OX(X) → OY (Y ), gives a bijection between the morphisms from Y to X and
the K algebra homomorhpisms from K[X] to OY (Y ).

In particular we have that X and Y are isomorphic affine varieties if and only if K[X]
and K[Y ] are isomorphic K algebras.

Proof: Given a K algebra homomorphism
Ψ : K[X] → OY (Y ).

We shall define a morphism
Φ : Y → X,

such that Φ∗ = Ψ . To this end we cover Y by open affine varieties {Yi}i∈I . Assume that X
is an affine variety in An

K
and that Yi is an affine variety in Am

K
. Let ρx : K[x1, . . . , xn] →

K[X], and ρYi
: K[y1, . . . , ym] → K[Yi] be the residue maps. Moreover let ψi : K[X] →
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K[Yi] be the composite of ψ with the map OY (Y ) → OY (Yi) = OYi
(Yi), and the inverse of

the isomorphism K[Yi] → OYi
(Yi).

Choose polynomials g1(y1, . . . , ym), . . . , gn(y1, . . . , ym) in the ring K[y1, . . . , ym] such that
ψiρXxj = ρYi

gj(y1, . . . , ym), for j = 1, . . . , n. Then we have an equality

ψjρX(xj)(b1, . . . , bm) = gj(b1, . . . , bm),

for j = 1, . . . , m, and all (b1, . . . , bm) in Yi. Since ψiρX is a K algebra homomorphism we
obtain that

ψiρX(f(x1, . . . , xn)) = f(ψρX(x1), . . . , ψρX(xn)),

for all polynomials f(x1, . . . , xn) in K[x1, . . . , xn]. Hence we have that

ψiρX(f)(b1, . . . , bn) = f(g1(b1, . . . , bm), . . . , gn(b1, . . . , bm)), (5.5.17.1)

for all (b1, . . . , bm) in Yi. In particular, for all f in I(X), and all (b1, . . . , bm) in Yi, we have

f(g1(b1, . . . , bm), . . . , gn(b1, . . . , bm)) = 0.

Hence (g1(b1, . . . , bm), . . . , gn(b1, . . . , bm)) is in X for all (b1, . . . , bm) in Yi. Consequently,
we can define a morphism

Φi : Yi → X

by Φi(b1, . . . , bm) = (g1, (b1, . . . , bm), . . . , gn(b1, . . . , bm)), for all (b1, . . . , bm) in Yi. It follows
from Equation 5.5.17.1 that, for all (b1, . . . , bm) in Yi, and f in K[x1, . . . , xn], we have

ψiρX(f)(b1, . . . , bm) = fψi(b1, . . . , bm) = Ψ ∗ρX(f).

Consequently, we have that Ψi = Φ∗i . Moreover, the map Yi → X associated to Φ∗i is Φi.
Given two open affine varieties Yi and Yj of Y , and let W be an affine variety that is an

open subset of Yi∩Yj. The composite of the map ψ : K[X] → K[Yi] and ψj : K[X] → K[Yj]
with the map K[Yi] → K[W ], respectively K[Yj] → K[W ], obtained from OYi

(Yi) →
OYi

(W ) = OW (W ), respectively OYj
(Yj) → OYj

(W ) = OW (W ), are the same. Conse-
quently, the construction gives maps Φi and Φj that coincide on W . It follows that the
maps Φi : Yi → X, for all i in I, induce a map Φ : Y → X, such that Φ|Yi

= Φi, for all i. It
is clear that Φ∗ = Ψ .

Conversely let Φ : Y → X be a morphism. The above construction applied to the K-
algebra homomorphism Φ∗ : K[Y ] → OY (Y ) gives a morphism Y → X which clearly is
Φ. Hence we have a natural bijection between the algebraic maps from Y to X and the K
algebra homomorphisms K[X] → OY (Y ), which associates Φ∗ to Φ. ¤
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Exercises
5.5.1. Let R be a ring. Show that an ideal I of R is prime if and only if the residue ring R/I is
an integral domain.

5.5.2. Show that the total quotient ring K(Z) of the integers is canonically isomorphic to the
rational numbers Q.

5.5.3. Show that the total quotient ring K(K[x1, . . . , xn]) of the polynomial ring K[x1, . . . , xn]
is the field of rational functions, that is, the field of all quotients f(x1,...,xn)

g(x1,...,xn) of polynomials in
K[x1, . . . , xn], with g 6= 0.

5.6 Subvarieties
In Sections 5.1 and 5.3 we defined affine varieties, coordinate rings and regular fuctions

with respect to a fixed imbedding into an affine space. We proved that the coordinate ring,
and regular functions, are independent of the imbedding. In this section we go one step
further to liberate the consepts from the ambient spaces.
Definition 5.6.1. Let X and Y be prevarieties and assume that Y is a closed subset of
X. We say that Y is a closed sub prevariety of X if the inclusion map ι : Y → X of Y in
X is a morphism, and if, for each point x of Y , we have that the map

OX,x → OY,x

of germs of regular functions at x that is induced by ι, is surjective. When X is an affine
variety we say that Y is a subvariety.
Example 5.6.2. Let X be an affine variety in An

K
, and Y a closed subset of X. Then Y is

an affine variety as a closed subset of An
K
, and the inclusion map of Y in X is a morphism.

We have an inclusion I(X) ⊆ I(Y ) of ideals in K[x1, . . . , xn] and thus a surjection
ϕ : K[X] → K[Y ].

For each point x of Y we have a map
ϕy : K[X]MX,x

→ K[Y ]MY,x

defined by ϕy(
f
g
) = ϕ(f)

ϕ(g)
. This map is well defined because, if g(x) 6= 0, then ϕ(g)(x) =

g(x) 6= 0, and it is surjective because ϕ is surjective. It follows from Proposition 5.5.15
that the map OX,x → OY,x is surjective. Hence Y is a closed subvariety of X. It follows
from Example 5.1.6 that the matrix groups Sln(K), GS(K), and SGS(K), for all invertible
S, are closed subvarieties of the affine variety Gln(K).
Example 5.6.3. Let Y be a closed subset of a prevariety X. For each open affine subvariety
U of X we have, by Example 5.6.2 that U∩Y is a subvarity of X with coordinate ring equal
to K[U ]/I, where I is the ideal of elements f in K[U ] such that f(x) = 0, for x in U ∩ Y .
Hence we can cover Y by algebraic charts of the type U ∩ Y , where U is an affine variety
which is open in X. These charts constitute an atlas on Y . Indeed, let ϕi : Vi → Ui, for
i = 1, 2, be two charts on X, and let W be an open affine subvariety of X, containing x and
contained in U1 ∩ U2. Then ϕ−1

2 ϕ1 defines an isomorphism ψ : ϕ−1
1 (W ) → ϕ−1

2 (W ) which
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induces a homomorphism ϕ−1
1 (W ∩ Y ) → ϕ−1

2 (W ∩ Y ). Consequently, the homomorphism
ψ∗ : K[ϕ−1

2 (W )] → K[ϕ−1
1 (W )] induces a bijection between the ideal of functions vanishing

on the closed set ϕ−1
2 (W ∩ Y ) of ϕ−1

2 (W ) with the ideal of functions vanishing on the
closed subset ϕ−1

1 (W ∩ Y ) of ϕ−1
1 (W ). Hence ψ∗ induces an isomorphism of coordinate

rings K[ϕ−1
2 (W ∩ Y )] → K[ϕ−1

1 (W ∩ Y )]. It follows from Proposition 5.5.17 that the
corresponding morphism ϕ−1

1 (W ∩Y ) → ϕ−1
2 (W ∩Y ) is an isomorphism of affine varieties.

It follows that the map ϕ−1
1 (U1 ∩ Y ) → ϕ−1

2 (U2 ∩ Y ) is an isomorphism. Consequently the
charts defined by ϕ1|U1∩Y and ϕ2|U2∩Y are part of an atlas. Hence the same is true for any
two of the charts we have defined on Y , and Y is a prevariety.

We saw in Example 5.6.2 that, for all affine subsets U of X, the map U ∩ Y → U is a
morphism and the map

OU,x → OU∩Y,x

of germs of regular functions at x is surjective for all points x of U ∩ Y . However, the
regular functions of a variety at a point is the same as that for an open neighbourhood of
the point. Hence the map

OX,x → OY,x

is also surjective, and Y is a closed sub prevariety of X.

Proposition 5.6.4. Let X and Y be prevarieties. Assume that Y is a closed subset of
X and that the inclusion makes Y into a closed sub prevariety of X. Then the inclusion
map induces an isomorphism between the prevariety Y and the prevariety induced, as in
Excercise 5.6.3, on the closed subset underlying Y .

Proof: Denote by Z the prevariety induced on the underlying closed set of Y in Excercise
5.6.3. It suffices to consider the structures on open subsets of X, so we may assume that
X is an affine variety. We then have a surjection K[X] → K[Z] of coordinate rings given
by the induced structure on Z as in Excample 5.6.3. Corresponding to the map Y → X
it follows from Proposition 5.5.17 that we have a map of rings K[X] → OY (Y ). Since the
prevarieties Y and Z have the same underlying set the kernel of the maps K[X] → K[Z]
and K[X] → OY (Y ) are the same, and equal the elements f of K[X] that vanish on Y = Z.
Consequently the surjective map K[X] → K[Z] gives rise to an injective map

ψ : K[Z] → OY (Y ),

and hence it follows form Proposition 5.5.17 that the inclusion map ι : Y → Z is a mor-
phism of prevarieties. It follows from Proposition 5.5.17 that the inclusion map induces an
isomorphism if and only if the map ψ is an isomorphism. Hence, to prove the proposition,
it remains to prove that ψ is surjective. The composite map

OX,x → OZ,x → OY,x

is surjective, for all x in Y = Z, by assumption. Hence the right hand map is also
surjective. This map is also an injection, for if a class [(U, f)] in OZ,x is mapped to zero,
then fι(x) = f(x) = 0, for all x in a neighbourhood of x in Y , or, which is the same
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because ι is a homeomorphism, in a neighbourhood of x in Z. The same reasoning shows
that the map OZ(W ) → OY (W ) is injective, for all open sets W of Y = Z.

Let g be an element of OY (Y ). For all x in Y there is a unique element sx in OZ,x that
maps to the class gx of g in OY,x. We have that sx is the class of a regular function fV

defined on a neighbourhood V of x in Z. The function (fV )ι on the neighbourhood V of
x considered in Y maps to gx in OY,x. Consequently, we have that g and fV ι are equal in
a neighbourhood W of x in Y . Hence fW = fV |W maps to g|W by the map

OZ(W ) → OY (W ).

Since the latter map is injective we have that fW is uniquely defined. Hence the elements
fW , for each point x in X, define a function f in OZ(Z) = K[Z], that maps to g, and we
have proved the proposition. ¤
5.6.5. A topological space can have several structures as a prevariety. We shall show that
a morphism Φ : Y → X of prevarieties which is a homeomorphism of topological spaces is
not necessarily an isomorphism of prevarieties.

Example 5.6.6. Let K = K and assume that 2 = 0 in K. Moreover let Φ : A1
K
→ A1

K
be

the map defined by Φ(a) = a2. This map is clearly a morphism. As the field K contains
square roots of all of its elements it is onto, and it is injective because, if Φ(a) = Φ(b),
then 0 = a2 − b2 = (a− b)2, since 2 = 0, and hence a = b. The map is a homeomorphism
because, it sends finite sets to finite sets, and the open sets are the complements of finite
sets (see Example 5.1.11). However, it is not an isomorphism because the corresponding
map of coordinate rings K[x1] → K[x1] maps x1 to x2

1, and therefore is not surjective.

5.7 The tangent space of prevarieties
The tangent spaces of prevarieties are introduced in analogy with those for manifolds.

They have similar properties and can be computed in the same way as the tangen spaces
for manifolds.

Let X be a prevariety and x a point of X. We have an augmentation map 5.5.7.1 from
the ring OX,x of germs of regular functions at x to K, that maps a class [(U, f)] to f(x).
Similarly, when X is an affine variety we have an augmentation map K[X] → K as in
5.5.14.1 that maps f to f(x).

Definition 5.7.1. The tangent space Tx(X) of the prevariety X at the point x is the space
of derivations

δ : OX,x → K,

for the augmentation map at x.

Remark 5.7.2. The tangent space is a vector space over K, where addition δ + ε of two
derivations δ and ε is given by (δ + ε)f = δf + εf , and multiplication aδ with an element
a of K is given by (aδ)f = aδ(f).

Let U be an open subset of X containing x. The restriction OX,x → OU,x is an isomor-
phism. Consequently we have an isomorphism Tx(U) → Tx(X).
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Let Φ : Y → X be a morphism of prevarieties. From the natural map 5.5.8.1
Φ∗y : OX,Φ(y) → OY,y

we obtain a map
TyΦ : Ty(Y ) → TΦ(y)(X),

for all y in Y , which maps the derivative δ∗y : OY,y → K to the derivative δΦ : OX,Φ(y) → K.
When Y is a closed sub prevariety of X we have, by definition, that Φ∗y is a surjection.
Hence, if δ∗yΦ = 0 we have that δ = 0, and thus TyΦ is injective.

5.8 Derivations
Before we show how to compute the tangent spaces of prevarieties we shall give some of

the fundamental properties of derivations.
Recall (see 3.6.2) that given K algebras R and S, and a K algebra homomorphism

ϕ : R → S, we say that a K linear map
δ : R → S

is a derivation with respect to ϕ if
δ(ab) = ϕ(a)δb + ϕ(b)δb, (5.8.0.1)

for all a and b in R. The set Derϕ(R, S) of all derivations is a vector space over K, with
addition δ + ε of two derivations δ and ε given by (δ + ε)f = δf + εf , and multiplication
aδ by an element a of K given by (aδ)f = aδf .

Let T be a third K algebra, and let ψ : S → T be another K algebra homomorphism.
Then we have a linear map

Derψ(S, T ) → Derψϕ(R, T ), (5.8.0.2)
which maps a derivation δ : S → T , for ϕ, to the derivation δϕ : R → T , for ψϕ. When ϕ is
surjective we have that the map Der ϕ : Derψ(S, T ) → Derψϕ(R, T ) is injective, because, if
δϕ = 0, then δ = 0. When ϕ is surjective we identigy Derψ(S, T ) with its image by 5.8.0.2.
Then

Derψ(S, T ) = {δ ∈ Derψϕ(R, T ) : δa = 0, for all a ∈ ker ϕ}.
Indeed, if δ in Derψ(S, T ) then δa = δϕ(a) = 0, for all a in ker ϕ. Conversely, if δ in
Derψϕ(R, T ) and δa = 0, for all a in ker ϕ, we can define a homomorphism ε : S → T by
εb = δa, for any a such that ϕ(a) = b. Indeed, if ϕ(a1) = ϕ(a2) = b, then a1 − a2 is in
ker ϕ, so δ(a1 − a2) = δa1 − δa2 = 0, and consequently δa1 = δa2. It is clear that ε is a
derivation for ψ and that it maps to δ by the map 5.8.0.2.

Assume that ϕ : R → S is surjective. Then Derψ(S, T ) is determined by the value of
the elements of Derψϕ(R, T ) on the generators of ker ϕ. In fact, let (ai)i∈I be generators
of Der ϕ. For δ ∈ Derψ(S, T ) we have that δai = 0, for all i ∈ I. Conversely, if δai = 0,
for all i ∈ I, and a = b1ai1 + · · · + bmaim with ij ∈ I is in ker ϕ, we have that δa =
ϕ(ai1)δb1 + · · · + ϕ(aim)δbm + ϕ(b1)δai1 + · · · + ϕ(bm)δaim = 0, since ϕ(aij) = 0 and
δaij = 0. Consequently, we have that

Derψ(S, T ) = {δ ∈ Derψϕ(R, T ) : δai = 0, for i = 1, . . . , m}.
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We next show that K-derivations on finitely generated K-algebras are determined by
their values on the generators. Let Ψ: K[a1, . . . , an] → R be a homomorphism of K-
algebras to a K-algebra R from the K-algebra K[a1, . . . , an] generated by the elements
a1, . . . , an. A derivation

δ : K[a1, . . . , an] → R

is uniquely determined by the elements δa1, . . . , δan. Indeed, since δ is K linear, we only
have to show that δ(ai1

1 · · · ain
n ) is determined by the elements δa1, . . . , δan for all monomials

ai1
1 · · · ain

n . However, this is clear since we by repeated use of the derivation rule 5.8.0.1
obtain that

δ(ai1
1 · · · ain

n ) =
∑
ij≥1

ijΨ(a1)
i1 · · ·Ψ(aj)

ij−1 · · ·Ψ(an)inδaj.

5.9 Partial derivatives
Let ϕ : K[x1, . . . , xn] → R be a K-algebra homomorphism from the polynomial ring over

K in the variables x1, . . . , xn to the K-algebra R. We denote by ∂
∂xi

the map

∂

∂xi

: K[x1, . . . , xn] → R,

defined by
∂

∂xj

(xi1
1 · · · xin

n ) = ijϕ(a1)
i1 · · ·ϕ(aj)

ij−1 · · ·ϕ(an)in ,

if ij ≥ 1, and 0 otherwise. The reference to ϕ will be omitted below because the dependence
of ϕ will be clear from the context. It is clear that ∂

∂xi
is a derivation. Let K[a1, . . . , an]

be a K-algebra generated by the elements a1, . . . , an and let

ψ : K[x1, . . . , xn] → K[a1, . . . , an]

be the K-algebra homomorphism uniquely defined by ψ(xi) = ai for i = 1, . . . , n. We see
that for any derivation δ : K[a1, . . . , an] → R we have that

δψ(f) =
n∑

i=1

δai
∂f

∂xi

,

for all f in K[x1, . . . , xn].
For the polynomial ring K[x1, . . . , xn] we obtain that all derivations δ can be written

uniquely in the form

δ =
n∑

i=1

δxi
∂

∂xi

.

Since ψ is surjective we can identify Derψ(K[a1, . . . , an], R) with the subset

{δ ∈ Derψϕ(K[x1, . . . , xn], R) : δa = 0 for all a ∈ ker ϕ}.
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With this identification have that

Derϕ(K[a1, . . . , an], R) = {b1
∂

∂x1

+ · · ·+ bn
∂

∂xn

: bi ∈ R, and

b1
∂f

∂x1

+ · · · bn
∂f

∂xn

= 0, for all f in a generator set of ker ϕ}.

In particular, if (c1, . . . , cn) is a point of An
K

such that f(c1, . . . , cn) = 0, for all f in
ker ϕ a homomorphism η : K[a1, . . . , an] → K, which maps the element ψf(x1, . . . , xn)
to f(c1, . . . , cn), , we have the augmentation map ϕψ : K[x1, . . . , xn] → K that mapps
f(x1, . . . , xn) to f(c1, . . . , cn), and. We obtain that

DerK(K[a1, . . . , an],K) = {b1
∂

∂x1

+ · · ·+ bn
∂

∂xn

: bi ∈ K, and

b1
∂f

∂x1

(c1, . . . , cn) + · · ·+ bn
∂f

∂xn

(c1, . . . , cn) = 0, for all f ∈ ker ϕ}.

Lemma 5.9.1. Let ϕ : R → K be a K algebra homomorphism, and S a multiplicatively
closed subset of R, such that ϕ(a) 6= 0, for all a in S. There exists a unique K algebra
homomorphism ψ : S−1R → K such that ψ(a

1
) = ϕ(a), for all a ∈ R.

Let δ : R → K be a derivation for ϕ. Then there is a unique derivation ε : S−1R → K,
for ψ such that ε(a

1
) = δ(a), for all a ∈ R.

Proof: We can define a map ψ : S−1R → K by ψ(a
b
) = ϕ(a)

ϕ(b)
, for all a ∈ R and b ∈ S.

Indeed, since b ∈ S, we have, by assumption, that ϕ(b) 6= 0, and, if a
b

= a′
b′ , there is a c ∈ S,

such that cab′ = ca′b. Hence ϕ(c)ϕ(a)ϕ(b′) = ϕ(c)ϕ(a′)ϕ(b) in K, with ϕ(c) 6= 0. Thus
ϕ(a)
ϕ(b)

= ϕ(a′)
ϕ(b′) . Clearly we have that ψ is a K algebra homomorphism, and, by definition,

ψ(a
1
) = ϕ(a).

Similarly, we can define a derivation ε : S−1R → K by ε(a
b
) = δa

ϕ(b)
− ϕ(a)

ϕ(b)2
δb, for all a ∈ K,

and b ∈ S. Indeed, since b ∈ S we have that ϕ(b) 6= 0, by assumption, and if a
b

= a′
b′ ,

there is a c ∈ S such that cab′ = ca′b. We obtain that ϕ(ca)δb′ + ϕ(cb′)δa + ϕ(ab′)δc =
ϕ(ca′)δb + ϕ(cb)δa′ + ϕ(a′b)δc. We divide by ϕ(c)ϕ(b′)ϕ(b) and obtain

ϕ(a)

ϕ(b)

δb′

ϕ(b′)
+

δa

ϕ(b)
+

ϕ(a)δc

ϕ(b)ϕ(c)
=

ϕ(a′)δb
ϕ(b′)ϕ(b)

+
δa′

ϕ(b′)
+

ϕ(a′)δc
ϕ(b)ϕ(c)

.

Since ϕ(a)
ϕ(b)

= ϕ(a′)
ϕ(b′) , we get ε(a

b
) = ε(a′

b′ ). It is clear that ε is a derivation for ψ and that
ε(a

1
0 = δ(a) for all a ∈ R. ¤

Proposition 5.9.2. Let X be an affine variety and x a point of X. Denote by ϕx : K[X] →
K the augmentation map. Then we have a canonical isomorphism

Derϕx(K[X],K) → Tx(X).
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Proof: It follows from Proposition 5.5.15 that we have an isomorphism K[X]MX,x
→ OX,x,

where MX,x is the kernel of ϕx. The proposition is therefore a consequence of Lemma
5.9.1. ¤

Example 5.9.3. It follows from Proposition 5.9.2 that, for x in An
K
, we have that Tx(A

n
K

) is
canonically isomophic to the n dimensional vector space of derivations K[x1, . . . , xn] → K,
for the augmentation map ϕx : K[x1, . . . , xn] → K. As we saw in 5.7.2 we have a basis of
this vector space consisting of the derivations

∂

∂xi

: K[x1, . . . , xn] → K, for i = 1, . . . n,

where ∂xj

∂xi
is 1 for i = j and 0 otherwise.

Example 5.9.4. Let X be the subvariety V(x2
2 − x2

1 − x3
1) of A2

K
. The kernel of the

canonical map K[x1, x2] → K[X] is the ideal generated by f = x2
2 − x2

1 − x3
1. Indeed, the

kernel I(X) contains f , and since, by Hilberts Nullstellensatz, we have that every g in
I(X) can be written as gd = hf , for some positive integer d and polynomial h in K[x1, x2].
Since f can not be written as a product of two polynomials of positive degree less than 3
it is possible to show that we can take d = 1.

For x = (a1, a2) in A2
K
we have that Tx(X) is the subspace of the vector space with basis

∂
∂x1

and ∂
∂x2

consisting of derivations such that a1
∂

∂x1
+a2

∂
∂x2

f = 2a2
∂

∂x2
−2a1

∂
∂x1
−3a2

1
∂

∂x1
=

0. If x = (a1, a2) 6= (0, 0), this space has dimension one, spanned by ∂
∂x1

when a2 6= 0, and
by ∂

∂x2
if a2 = 0.

On the other hand, when x = (0, 0), we have that Tx(X) two dimensional and thus equal
to Tx(A

2
K

).

We see from Example 5.9.4 that the tangent space to a prevariety can have different
dimension at different points. A prevariety is therefore not a good analogue of manifolds.
We shall later introduce smooth manifolds that will have properties similar to those of
manifolds.

5.10 Tangent spaces for zeroes of polynomials
We shall in this section present the epsilon calculus for prevarieties. The treatment is

analogous to that for manifolds in Section 3.7.
Let X be an affine variety in An

K
. Choose generators f1, . . . , fm for the ideal I(X). We

saw in Section 5.7 that, for all points x in X, the tangent space Tx(X) is isomorphic to
the subspace of the n dimensional space Tx(A

n
K

) with basis

∂

∂xi

: K[x1, . . . , xn] → K, for i = 1, . . . , n,

consisting of vectors δ = a1
∂

∂x1
+ · · ·+ an

∂
∂xn

such that δ(fi) = 0 for i = 1, . . . , m.
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Lemma 5.10.1. Let x be a point of an affine variety X, and let ϕx : K[X] → K be the
augmentation map. The map

ψ : DerK(K[X],K) → Homϕx−alg(K[X],K[ε]),

such that ϕ(δ)(f) = f(x)+ δfε is a bijection from the derivaties for the evaluation map, to
the K-algebra homomorphisms ζ : K[X] → K[ε], into the ring K[ε] of dual numbers that
are of the form ζ(f) = f(x) + δζ(f)ε, for some map δζ : K[X] → K.

Proof: Given a derivation δ : K[X] → K, for the evaluation at x. The map ζ : K[X] → K[ε]
defined by ζ(f) = f(x) + δ(f)ε is clearly K linear, and it is a K-algebra homomorphism
because ζ(gf) = (fg)(x) + δ(fg)ε = f(x)g(x) + (f(x)δg + g(x)δf)ε = (f(x) + δfε)(g(x) +
δgε) = ζ(f)ζ(g).

Conversely, given a K algebra homomorphism ζ : K[X] → K[ε] such that ζ(f) =
f(x) + δζ(f)ε. Then the map δζ : K[X] → K is clearly K linear and it is a derivation
because f(x)g(x) + δζ(fg)ε = ζ(fg) = ζ(f)ζ(g) = (f(x) + δζ(f)ε)(g(x) + δζ(g)ε) =
f(x)g(x) + (f(x)δζ(g) + g(x)δζ(g)ε) = f(x)g(x) + (f(x)δζ(g) + g(x)δζ(f))ε, and thus
δζ(fg) = f(x)δζ(g) + g(x)δζ(f). ¤
Remark 5.10.2. A K algebra homomorphism ϕ : K[x1, . . . , xn] → K[ε] such that ϕ(f) =
f(x) + δϕ(f)ε is completely determined by the values ϕ(xi) = ai + biε, for i = 1, . . . , n,
where x = (a1, . . . , an) and v = (b1, . . . , bn) are in An

K
, as we have seen in Remark 5.7.2.

With this notation we have that ϕ(f) = f(x + εv). It follows from the binomial formula
that

(a1 + εb1)
i1 · · · (an + εbn)in

= ai1
1 · · · ain

n +
∑

ij 6=1

ija
i1
1 · · · aij−1

j · · · ain
n bjε = ai1

1 · · · ain
n +

n∑
j=1

bj
∂(xi1

1 · · · xin
n )

∂xj

ε.

Hence we obtain, for all f in K[x1, . . . , xn] that, for all v = (v1, . . . , vn) ∈ An
K
we have that

f(x + εv) = f(x) +
n∑

j=1

bj
∂f

∂xj

ε.

It follows from Remark 5.7.2 that
Tx(X) = {v ∈ An

K
: f(x + εv) = f(x) = 0, for f ∈ I(X)}.

Example 5.10.3. We have that TIn(Gln(K)) = TIn(Mn(K)), and thus TIn(Gln(K)) = An2

K
.

Example 5.10.4. We have already seen, in Example 5.10.3, that the tangent space of
Gln(K) at In is equal to Mn(K). To find the tangent space of Sln(K) at In we use that
Sln(K) is the subset of Gln(K) defined by the polynomial det(xi,j) of degree n in the n2

variables xi,j, for i, j = 1, . . . , n. Consequently, the tangent space TIn(Sln(K)) of Sln(K)
at the unity In is equal to

{A ∈ Mn(K) : det(In + εA)− det In = 0}.
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A short calculation shows that det(In + εA) = 1 +
∑n

i=1 ai,iε (see Problem 3.7.2). Conse-
quently, we have that

TIn(Sln(K)) = {(ai,j) ∈ Mn(K) :
n∑

i=1

ai,i = 0}.

In particular aii = 0 for i = 1, . . . , n since 2 6= 0 in K. That is, TIn(Sln(K)) consists of all
matrices of trace equal to zero. In particular we have that the tangent space, and hence
Sln(K) both have dimension n2 − 1 (see Problem 2.5.4).
Example 5.10.5. Assume that 2 6= 0 in K. The group On(K) is the subset of Gln(K)
defined by the n2 polynomials, in n2 variables, that are the coefficients in the matrix
X tX − In. Consequently, the tangent space TIn(On(K)) is equal to

{A ∈ Mn(K) : (In + Aε)t(In + Aε)− In = 0}.
We have that (In + Aε)t(In + Aε)− In = (In + Aε)(tIn + tAε)− In = In + Aε + tAε− In =
(A + tA)ε. Consequently,

TIn(On(K)) = {A ∈ Mn(K) : A + tA = 0}.
That is, TIn(On(K)) consists of all antisymmetric matrices. In particular, we have that
the tangent space, and hence On(K) both have dimension n(n−1)

2
(see Exercise 2.5.5).

The subspace SOn(K) is defined in Mn(K) by the same equations as On(K) plus the
equation det(xi,j) − 1 = 0. As in Example 3.7.1 we see that this gives the condition that
the matrices of TIn(SOn(K)) have trace 0. Consequently, we have that TIn(SOn(K)) =

TIn(On(K)), and the dimension of SOn(K) is n(n−1)
2

.
Example 5.10.6. The symplectic group Spn(K) is the subset of Mn(K) of common zeroes
of the n2 polynomials in n2 variables that are the coefficients in the matrix XStX−S. We
obtain that the tangent space TIn(Spn(K)) of Spn(K) in In is

{A ∈ Mn(K) : (In + Aε)St(In + Aε) = S}.
We have that (In + Aε)St(In + Aε) − S = S + ASε + StAε − S. Consequently, we have
that

TIn(Spn(K)) = {A ∈ Mn(K)) : AS + StA = 0}.
However AS + StA = AS − tStA = AS − t(AS). Consequently, the isomorphism of
vector spaces Mn(K) → Mn(K), which sends a matrix A to AS (see Problem 2.5.6), maps
TIn(Spn(K)) isomorphically onto the subspace of Mn(K) consisting of symmetric matrices.
In particular the tangent space, and the space Spn(K), both have dimension n(n+1)

2
(see

Problem 2.5.7).
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