Matrix Groups - Homework set 9

Christian Lundkvist

chrislun@math.kth.se

December 20, 2004

Assignment 1. Let $\phi \in GL_{n+1}(\mathbb{C})$, and let $L \subseteq \mathbb{C}^{n+1}$ be a vector subspace of dimension 1. Show that $\phi(L)$ is also a vector subspace of dimension 1.

Thus ϕ induces a map of sets $F_{\phi}: \mathbf{P}^n \longrightarrow \mathbf{P}^n$ in the following way: Let $p \in \mathbf{P}^n$ be a point, and let $L_p = C(p) \subseteq \mathbb{C}^{n+1}$ be the associated line through the origin. Then we let $F_{\phi}(p) \in \mathbf{P}^n$ be the point corresponding to the line $\phi(L_p) \subseteq \mathbb{C}^{n+1}$.

Show that $F_{\phi}: \mathbf{P}^n \longrightarrow \mathbf{P}^n$ is an isomorphism in the category of varieties.

Proof. If $L \subseteq \mathbb{C}^{n+1}$ is a linear subspace of dimension one, then L is generated by a non-zero vector $v \in \mathbb{C}^{n+1}$. The space $\phi(L)$ will then be generated by the vector $\phi(v)$ which is non-zero since ϕ is invertible.

We will now show that F_{ϕ} is a homeomorphism. First of all, we note that $F_{\phi}^{-1} = F_{\phi^{-1}}$ as maps of sets. Thus if we can show that F_{ϕ} takes closed sets to closed sets, we are done. Let $V(\mathfrak{a}) \subseteq \mathbf{P}^n$ be a closed set, where $\mathfrak{a} \subseteq \mathbb{C}[x_0, \ldots, x_n]$ is a homogeneous radical ideal. Then

$$F_{\phi}(V(\mathfrak{a})) = \{ F_{\phi}(p) \in \mathbf{P}^n : f(p) = 0 \ \forall f \in \mathfrak{a} \} =$$
$$= \left\{ q \in \mathbf{P}^n : f(F_{\phi}^{-1}(q)) = 0 \ \forall f \in \mathfrak{a} \right\}.$$

For every homogeneous polynomial $f \in \mathfrak{a}$ we define a homogeneous polynomial of degree $\deg f$ as

$$\widetilde{f}(x_0, \dots, x_n) = f(\phi^{-1}(x_0, \dots, x_n)).$$

Then

$$F_{\phi}(V(\mathfrak{a})) = \left\{ q \in \mathbf{P}^n : \ \widetilde{f}(q) = 0 \ \forall f \in \mathfrak{a} \right\} = V(\mathfrak{b}),$$

where $\mathfrak{b} \subseteq \mathbb{C}[x_0,\ldots,x_n]$ is the ideal generated by the polynomials $\{\widetilde{f}: f \in \mathfrak{a}\}$. This shows that F_{ϕ} maps closed sets to closed sets, and thus F_{ϕ} is a homeomorphism.

To show that F_{ϕ} is an isomorphism, let $U \subseteq \mathbf{P}^n$ be an open set, and let $h = f/g \in \mathcal{O}(U)$ be a regular function, where $f, g \in \mathbb{C}[x_0, \dots, x_n]$ are homogeneous polynomials of the same degree. Then we must check that $h \circ F_{\phi}$ is a regular function on $F_{\phi}^{-1}(U)$. But $h \circ F_{\phi}$ is represented by the rational function

$$\frac{f(\phi(x_0,\ldots,x_n))}{g(\phi(x_0,\ldots,x_n))}$$

which is a quotient of polynomials of the same degree, where the denominator never vanishes on $F_{\phi}^{-1}(U) = F_{\phi^{-1}}(U)$. This shows that $h \circ F_{\phi}$ is a regular function, so F_{ϕ} is a morphism and thus an isomorphism.

Definition 1. Two projective varieties $X, Y \subseteq \mathbf{P}^n$ are said to be **linearly** isomorphic if there is some $\phi \in \mathrm{GL}_{n+1}(\mathbb{C})$ such that $Y = F_{\phi}(X)$.

Assignment 2. Let $f \in \mathbb{C}[x_0, \ldots, x_n]$ be a homogeneous polynomial of degree 2. The corresponding variety $V(f) \subseteq \mathbf{P}^n$ is called a **quadric**. Define a function $Q_f : \mathbb{C}^{n+1} \times \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ by

$$Q_f(u,v) = \frac{f(u+v) - f(u) - f(v)}{2}.$$

- (a) Show that Q_f is a bilinear symmetric form.
- (b) Let Q_f^* denote the linear map corresponding to Q_f . Define the **rank** of the polynomial f as $\operatorname{rk}(f) = \operatorname{rank}(Q_f^*)$. Show that two quadrics $V(f_1), V(f_2) \subseteq \mathbf{P}^n$ are linearly isomorphic if and only if $\operatorname{rk}(f_1) = \operatorname{rk}(f_2)$.
- (c) By the above we have that a quadric $V(f) \subseteq \mathbf{P}^n$ is reducible (irreducible) iff $\operatorname{rk}(f) = \operatorname{rk}(g)$ where $V(g) \subseteq \mathbf{P}^n$ is reducible (irreducible). Using this, determine for a given integer $i \geq 1$ whether the quadrics of rank i in \mathbf{P}^n are reducible or irreducible.

Proof of (a). Let $x = (x_0, \ldots, x_n)$ and $y = (y_0, \ldots, y_n)$ be two sets of variables. The polynomial f is of the form

$$f(x) = \sum_{i < j} \alpha_{ij} x_i x_j = x^T A x$$

where A is the matrix defined by

$$(A)_{ij} = \begin{cases} \alpha_{ii} & \text{if } i = j, \\ \frac{\alpha_{ij}}{2} & \text{if } i < j, \\ \frac{\alpha_{ji}}{2} & \text{if } j < i. \end{cases}$$

We note that A is symmetric. We have

$$Q_f(x,y) = \frac{1}{2}((x+y)^T A(x+y) - x^T Ax - y^T Ay) = \frac{1}{2}(x^T Ay + y^T Ax) =$$
$$= \frac{1}{2}y^T (A + A^T)x = y^T Ax.$$

This shows that Q_f is a bilinear symmetric form.

Proof of (b). Let $f_1, f_2 \in \mathbb{C}[x_0, \ldots, x_n]$ be two homogeneous quadratic polynomials, and let $A_1 = Q_{f_1}^*$ and $A_2 = Q_{f_2}^*$. Assume first that $V(f_1)$ and $V(f_2)$ are linearly isomorphic. Thus there is some $\phi \in \mathrm{GL}_{n+1}(\mathbb{C})$ such that $V(f_2) = F_{\phi}(V(f_1))$. From Assignment 1 we have that $V(f_2) = V(\widetilde{f_1})$, where

$$\widetilde{f}_1(x_0,\ldots,x_n) = f_1(\phi^{-1}(x_0,\ldots,x_n)).$$

Thus $\sqrt{(f_2)} = \sqrt{(\widetilde{f}_1)}$, and since f_2 and \widetilde{f}_1 are both of degree two, this means that $f_2 = \alpha \widetilde{f}_1$ for some non-zero $\alpha \in \mathbb{C}$.

Let B be the matrix corresponding to the linear map ϕ^{-1} . Then

$$f_2(x) = x^T A_2 x = \alpha (Bx)^T A_1 (Bx) = x^T (\alpha B^T A_1 B) x.$$

Therefore $A_2 = \alpha B^T A_1 B$ where B is invertible. This shows that $\operatorname{rank}(A_1) = \operatorname{rank}(A_2)$, and so $\operatorname{rk}(f_1) = \operatorname{rk}(f_2)$.

Next assume that $rk(f_1) = rk(f_2)$. Then, since A_1 and A_2 are symmetric of the same rank, we can by Paragraph 1.7.8 in Boij/Laksov find an invertible matrix S such that $A_2 = S^T A_1 S$. Thus

$$f_2(x) = x^T A_2 x = x^T S^T A_1 S x = (Sx) A_1 (Sx).$$

If we let ϕ^{-1} be the linear map corresponding to the matrix S, we have that $f_2 = \widetilde{f_1}$, and so $V(f_2) = F_{\phi}(V(f_1))$. This shows that $V(f_1)$ and $V(f_2)$ are linearly isomorphic.

Proof of (c). For i=1 one has that all quadratic polynomials whose associated matrix has rank 1 must be a square of a linear polynomial. Thus the corresponding variety is a linear variety, and thus irreducible.

For i=2 we consider the polynomial $f_2=x_0x_1$. This corresponds to a reducible variety $V(f_2)=V(x_0)\cup V(x_1)$, and the corresponding $(n+1)\times (n+1)$ -matrix is

$$Q_{f_2}^* = \begin{pmatrix} 0 & 1/2 & 0 & \cdots & 0 \\ 1/2 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

which has rank 2. Thus all quadrics of rank 2 in \mathbf{P}^n are reducible.

For i=3, consider the polynomial $f_3=x_0^2+x_1^2+x_2^2$. By viewing f_3 as a polynomial in $(\mathbb{C}[x_0,x_1])[x_2]$ and choosing $p=x_0+ix_1\in\mathbb{C}[x_0,x_1]$ we have by the Eisenstein criterion that f_3 is irreducible. Its corresponding matrix is a diagonal matrix with 1 as first three elements and 0 as the rest. Thus the matrix has rank 3, so all polynomials of rank 3 are irreducible.

For i > 3 we choose the polynomial $f_i = x_0^2 + \ldots + x_i^2$. By induction the polynomial $x_0^2 + \ldots + x_{i-1}^2$ is irreducible, and so we can use Eisenstein criterion again to conclude that f_i is irreducible. By the same argument as the case i = 3, its corresponding matrix will have rank i.

The conclusion is that a quadric $V(f) \subseteq \mathbf{P}^n$ is reducible iff $\operatorname{rk}(f) = 2$. \square

Assignment 3. Consider the map $d: sl_2(\mathbb{C}) \longrightarrow \mathbb{C}$ defined by

$$sl_2(\mathbb{C}) \ni A \longmapsto d(A) = \det A \in \mathbb{C}.$$

We identify $sl_2(\mathbb{C})$ with \mathbb{C}^3 by the isomorphism

$$\operatorname{sl}_2(\mathbb{C}) \ni \begin{pmatrix} x & y \\ z & -x \end{pmatrix} \longleftrightarrow (x, y, z) \in \mathbb{C}^3.$$

For each $t \in \mathbb{C}$ define $X_t = d^{-1}(t) \subseteq \mathbb{C}^3$.

- (a) Show that $X_t \subseteq \mathbb{C}^3$ is an irreducible affine variety for each $t \in \mathbb{C}$.
- (b) We let $\mathbb{C}[x, y, z, w]$ be the homogeneous coordinate ring of \mathbf{P}^3 . Then we identify \mathbb{C}^3 with the open subset $D(w) = \mathbf{P}^3 V(w) \subseteq \mathbf{P}^3$. Let $t \in \mathbb{C}$. Show that there is a unique quadratic homogeneous polynomial $f_t \in \mathbb{C}[x, y, z, w]$ such that $V(f_t) \cap D(w) \cong X_t \subseteq \mathbb{C}^3$.

(c) Show that $\operatorname{rk}(f_t) = 4$ if $t \neq 0$ and that $\operatorname{rk}(f_0) = 3$.

Proof of (a). We have for each $t \in \mathbb{C}$, that $X_t = V(x^2 + yz + t)$. But we can use for instance the Eisenstein criterion to deduce that the polynomial $x^2 + yz + t$ is irreducible for each $t \in \mathbb{C}$. Thus the corresponding variety must also be irreducible.

Proof of (b). We let $f_t \in \mathbb{C}[x,y,z,w]$ be the homogeneous polynomial

$$f_t = x^2 + yz + tw^2.$$

We now have an isomorphism between $V(f_t) \cap D(w)$ and X_t defined by

$$\begin{array}{cccc} V(f_t) \cap D(w) & \longrightarrow & X_t \\ (a_0:a_1:a_2:a_3) & \longrightarrow & (a_0/a_3,a_1/a_3,a_2/a_3) \\ (b_0:b_1:b_2:1) & \longleftarrow & (b_0,b_1,b_2) \end{array}$$

Proof of (c). Since we have

$$f_t(x, y, z, w) = x^2 + yz + tw^2 = \begin{pmatrix} x & y & z & w \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & t \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$

we have by Assignment 2(a) that

$$Q_{f_t}^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & t \end{pmatrix}.$$

Thus it is clear by inspection that the rank of the matrix $Q_{f_t}^*$ is 4 if $t \neq 0$, and that the rank is 3 if t = 0.