Matrix Groups - Homework set 9

Christian Lundkvist
chrislun@math.kth.se

December 20, 2004

Assignment 1. Let $\phi \in \mathrm{GL}_{n+1}(\mathbb{C})$, and let $L \subseteq \mathbb{C}^{n+1}$ be a vector subspace of dimension 1. Show that $\phi(L)$ is also a vector subspace of dimension 1.

Thus ϕ induces a map of sets $F_{\phi}: \mathbf{P}^{n} \longrightarrow \mathbf{P}^{n}$ in the following way: Let $p \in \mathbf{P}^{n}$ be a point, and let $L_{p}=C(p) \subseteq \mathbb{C}^{n+1}$ be the associated line through the origin. Then we let $F_{\phi}(p) \in \mathbf{P}^{n}$ be the point corresponding to the line $\phi\left(L_{p}\right) \subseteq \mathbb{C}^{n+1}$.

Show that $F_{\phi}: \mathbf{P}^{n} \longrightarrow \mathbf{P}^{n}$ is an isomorphism in the category of varieties.
Proof. If $L \subseteq \mathbb{C}^{n+1}$ is a linear subspace of dimension one, then L is generated by a non-zero vector $v \in \mathbb{C}^{n+1}$. The space $\phi(L)$ will then be generated by the vector $\phi(v)$ which is non-zero since ϕ is invertible.

We will now show that F_{ϕ} is a homeomorphism. First of all, we note that $F_{\phi}^{-1}=F_{\phi^{-1}}$ as maps of sets. Thus if we can show that F_{ϕ} takes closed sets to closed sets, we are done. Let $V(\mathfrak{a}) \subseteq \mathbf{P}^{n}$ be a closed set, where $\mathfrak{a} \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ is a homogeneous radical ideal. Then

$$
\begin{gathered}
F_{\phi}(V(\mathfrak{a}))=\left\{F_{\phi}(p) \in \mathbf{P}^{n}: f(p)=0 \forall f \in \mathfrak{a}\right\}= \\
=\left\{q \in \mathbf{P}^{n}: f\left(F_{\phi}^{-1}(q)\right)=0 \forall f \in \mathfrak{a}\right\} .
\end{gathered}
$$

For every homogeneous polynomial $f \in \mathfrak{a}$ we define a homogeneous polynomial of degree $\operatorname{deg} f$ as

$$
\tilde{f}\left(x_{0}, \ldots, x_{n}\right)=f\left(\phi^{-1}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

Then

$$
F_{\phi}(V(\mathfrak{a}))=\left\{q \in \mathbf{P}^{n}: \widetilde{f}(q)=0 \forall f \in \mathfrak{a}\right\}=V(\mathfrak{b})
$$

where $\mathfrak{b} \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ is the ideal generated by the polynomials $\{\widetilde{f}: f \in \mathfrak{a}\}$. This shows that F_{ϕ} maps closed sets to closed sets, and thus F_{ϕ} is a homeomorphism.

To show that F_{ϕ} is an isomorphism, let $U \subseteq \mathbf{P}^{n}$ be an open set, and let $h=$ $f / g \in \mathcal{O}(U)$ be a regular function, where $f, g \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ are homogeneous polynomials of the same degree. Then we must check that $h \circ F_{\phi}$ is a regular function on $F_{\phi}^{-1}(U)$. But $h \circ F_{\phi}$ is represented by the rational function

$$
\frac{f\left(\phi\left(x_{0}, \ldots, x_{n}\right)\right)}{g\left(\phi\left(x_{0}, \ldots, x_{n}\right)\right)}
$$

which is a quotient of polynomials of the same degree, where the denominator never vanishes on $F_{\phi}^{-1}(U)=F_{\phi^{-1}}(U)$. This shows that $h \circ F_{\phi}$ is a regular function, so F_{ϕ} is a morphism and thus an isomorphism.

Definition 1. Two projective varieties $X, Y \subseteq \mathbf{P}^{n}$ are said to be linearly isomorphic if there is some $\phi \in \mathrm{GL}_{n+1}(\mathbb{C})$ such that $Y=F_{\phi}(X)$.

Assignment 2. Let $f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree 2. The corresponding variety $V(f) \subseteq \mathbf{P}^{n}$ is called a quadric. Define a function $Q_{f}: \mathbb{C}^{n+1} \times \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ by

$$
Q_{f}(u, v)=\frac{f(u+v)-f(u)-f(v)}{2}
$$

(a) Show that Q_{f} is a bilinear symmetric form.
(b) Let Q_{f}^{*} denote the linear map corresponding to Q_{f}. Define the rank of the polynomial f as $\operatorname{rk}(f)=\operatorname{rank}\left(Q_{f}^{*}\right)$. Show that two quadrics $V\left(f_{1}\right), V\left(f_{2}\right) \subseteq$ \mathbf{P}^{n} are linearly isomorphic if and only if $\operatorname{rk}\left(f_{1}\right)=\operatorname{rk}\left(f_{2}\right)$.
(c) By the above we have that a quadric $V(f) \subseteq \mathbf{P}^{n}$ is reducible (irreducible) iff $\operatorname{rk}(f)=\operatorname{rk}(g)$ where $V(g) \subseteq \mathbf{P}^{n}$ is reducible (irreducible). Using this, determine for a given integer $i \geq 1$ whether the quadrics of rank i in \mathbf{P}^{n} are reducible or irreducible.

Proof of (a). Let $x=\left(x_{0}, \ldots, x_{n}\right)$ and $y=\left(y_{0}, \ldots, y_{n}\right)$ be two sets of variables. The polynomial f is of the form

$$
f(x)=\sum_{i \leq j} \alpha_{i j} x_{i} x_{j}=x^{T} A x
$$

where A is the matrix defined by

$$
(A)_{i j}=\left\{\begin{array}{l}
\alpha_{i i} \text { if } i=j \\
\frac{\alpha_{j i}}{2} \text { if } i<j, \\
\frac{\alpha_{j i}}{2} \text { if } j<i
\end{array}\right.
$$

We note that A is symmetric. We have

$$
\begin{gathered}
Q_{f}(x, y)=\frac{1}{2}\left((x+y)^{T} A(x+y)-x^{T} A x-y^{T} A y\right)=\frac{1}{2}\left(x^{T} A y+y^{T} A x\right)= \\
=\frac{1}{2} y^{T}\left(A+A^{T}\right) x=y^{T} A x
\end{gathered}
$$

This shows that Q_{f} is a bilinear symmetric form.
Proof of (b). Let $f_{1}, f_{2} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ be two homogeneous quadratic polynomials, and let $A_{1}=Q_{f_{1}}^{*}$ and $A_{2}=Q_{f_{2}}^{*}$. Assume first that $V\left(f_{1}\right)$ and $V\left(f_{2}\right)$ are linearly isomorphic. Thus there is some $\phi \in \mathrm{GL}_{n+1}(\mathbb{C})$ such that $V\left(f_{2}\right)=F_{\phi}\left(V\left(f_{1}\right)\right)$. From Assignment 1 we have that $V\left(f_{2}\right)=V\left(\widetilde{f}_{1}\right)$, where

$$
\tilde{f}_{1}\left(x_{0}, \ldots, x_{n}\right)=f_{1}\left(\phi^{-1}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

Thus $\sqrt{\left(f_{2}\right)}=\sqrt{\left(\widetilde{f}_{1}\right)}$, and since f_{2} and \widetilde{f}_{1} are both of degree two, this means that $f_{2}=\alpha \tilde{f}_{1}$ for some non-zero $\alpha \in \mathbb{C}$.

Let B be the matrix corresponding to the linear map ϕ^{-1}. Then

$$
f_{2}(x)=x^{T} A_{2} x=\alpha(B x)^{T} A_{1}(B x)=x^{T}\left(\alpha B^{T} A_{1} B\right) x .
$$

Therefore $A_{2}=\alpha B^{T} A_{1} B$ where B is invertible. This shows that $\operatorname{rank}\left(A_{1}\right)=$ $\operatorname{rank}\left(A_{2}\right)$, and so $\operatorname{rk}\left(f_{1}\right)=\operatorname{rk}\left(f_{2}\right)$.

Next assume that $\operatorname{rk}\left(f_{1}\right)=\operatorname{rk}\left(f_{2}\right)$. Then, since A_{1} and A_{2} are symmetric of the same rank, we can by Paragraph 1.7.8 in Boij/Laksov find an invertible matrix S such that $A_{2}=S^{T} A_{1} S$. Thus

$$
f_{2}(x)=x^{T} A_{2} x=x^{T} S^{T} A_{1} S x=(S x) A_{1}(S x) .
$$

If we let ϕ^{-1} be the linear map corresponding to the matrix S, we have that $f_{2}=\widetilde{f}_{1}$, and so $V\left(f_{2}\right)=F_{\phi}\left(V\left(f_{1}\right)\right)$. This shows that $V\left(f_{1}\right)$ and $V\left(f_{2}\right)$ are linearly isomorphic.

Proof of (c). For $i=1$ one has that all quadratic polynomials whose associated matrix has rank 1 must be a square of a linear polynomial. Thus the corresponding variety is a linear variety, and thus irreducible.

For $i=2$ we consider the polynomial $f_{2}=x_{0} x_{1}$. This corresponds to a reducible variety $V\left(f_{2}\right)=V\left(x_{0}\right) \cup V\left(x_{1}\right)$, and the corresponding $(n+1) \times(n+1)$ matrix is

$$
Q_{f_{2}}^{*}=\left(\begin{array}{ccccc}
0 & 1 / 2 & 0 & \cdots & 0 \\
1 / 2 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

which has rank 2. Thus all quadrics of rank 2 in \mathbf{P}^{n} are reducible.
For $i=3$, consider the polynomial $f_{3}=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}$. By viewing f_{3} as a polynomial in $\left(\mathbb{C}\left[x_{0}, x_{1}\right]\right)\left[x_{2}\right]$ and choosing $p=x_{0}+i x_{1} \in \mathbb{C}\left[x_{0}, x_{1}\right]$ we have by the Eisenstein criterion that f_{3} is irreducible. Its corresponding matrix is a diagonal matrix with 1 as first three elements and 0 as the rest. Thus the matrix has rank 3 , so all polynomials of rank 3 are irreducible.

For $i>3$ we choose the polynomial $f_{i}=x_{0}^{2}+\ldots+x_{i}^{2}$. By induction the polynomial $x_{0}^{2}+\ldots+x_{i-1}^{2}$ is irreducible, and so we can use Eisenstein criterion again to conclude that f_{i} is irreducible. By the same argument as the case $i=3$, its corresponding matrix will have rank i.

The conclusion is that a quadric $V(f) \subseteq \mathbf{P}^{n}$ is reducible iff $\operatorname{rk}(f)=2$.
Assignment 3. Consider the map $d: \mathrm{sl}_{2}(\mathbb{C}) \longrightarrow \mathbb{C}$ defined by

$$
\operatorname{sl}_{2}(\mathbb{C}) \ni A \longmapsto d(A)=\operatorname{det} A \in \mathbb{C} .
$$

We identify $\mathrm{sl}_{2}(\mathbb{C})$ with \mathbb{C}^{3} by the isomorphism

$$
\operatorname{sl}_{2}(\mathbb{C}) \ni\left(\begin{array}{cc}
x & y \\
z & -x
\end{array}\right) \longleftrightarrow(x, y, z) \in \mathbb{C}^{3} .
$$

For each $t \in \mathbb{C}$ define $X_{t}=d^{-1}(t) \subseteq \mathbb{C}^{3}$.
(a) Show that $X_{t} \subseteq \mathbb{C}^{3}$ is an irreducible affine variety for each $t \in \mathbb{C}$.
(b) We let $\mathbb{C}[x, y, z, w]$ be the homogeneous coordinate ring of \mathbf{P}^{3}. Then we identify \mathbb{C}^{3} with the open subset $D(w)=\mathbf{P}^{3}-V(w) \subseteq \mathbf{P}^{3}$.
Let $t \in \mathbb{C}$. Show that there is a unique quadratic homogeneous polynomial $f_{t} \in \mathbb{C}[x, y, z, w]$ such that $V\left(f_{t}\right) \cap D(w) \cong X_{t} \subseteq \mathbb{C}^{3}$.
(c) Show that $\operatorname{rk}\left(f_{t}\right)=4$ if $t \neq 0$ and that $\operatorname{rk}\left(f_{0}\right)=3$.

Proof of (a). We have for each $t \in \mathbb{C}$, that $X_{t}=V\left(x^{2}+y z+t\right)$. But we can use for instance the Eisenstein criterion to deduce that the polynomial $x^{2}+y z+t$ is irreducible for each $t \in \mathbb{C}$. Thus the corresponding variety must also be irreducible.

Proof of (b). We let $f_{t} \in \mathbb{C}[x, y, z, w]$ be the homogeneous polynomial

$$
f_{t}=x^{2}+y z+t w^{2}
$$

We now have an isomorphism between $V\left(f_{t}\right) \cap D(w)$ and X_{t} defined by

$$
\left.\left.\begin{array}{rl}
V\left(f_{t}\right) \cap D(w) & \longrightarrow
\end{array} X_{t}, a_{0}, a_{0}, a_{3}, a_{3}\right)\right)
$$

Proof of (c). Since we have

$$
f_{t}(x, y, z, w)=x^{2}+y z+t w^{2}=\left(\begin{array}{llll}
x & y & z & w
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & t
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)
$$

we have by Assignment 2(a) that

$$
Q_{f_{t}}^{*}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & t
\end{array}\right)
$$

Thus it is clear by inspection that the rank of the matrix $Q_{f_{t}}^{*}$ is 4 if $t \neq 0$, and that the rank is 3 if $t=0$.

