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Assignment 1. Let φ ∈ GLn+1(C), and let L ⊆ Cn+1 be a vector subspace of
dimension 1. Show that φ(L) is also a vector subspace of dimension 1.

Thus φ induces a map of sets Fφ : Pn −→ Pn in the following way: Let
p ∈ Pn be a point, and let Lp = C(p) ⊆ Cn+1 be the associated line through
the origin. Then we let Fφ(p) ∈ Pn be the point corresponding to the line
φ(Lp) ⊆ Cn+1.

Show that Fφ : Pn −→ Pn is an isomorphism in the category of varieties.

Proof. If L ⊆ Cn+1 is a linear subspace of dimension one, then L is generated
by a non-zero vector v ∈ Cn+1. The space φ(L) will then be generated by the
vector φ(v) which is non-zero since φ is invertible.

We will now show that Fφ is a homeomorphism. First of all, we note that
F−1

φ = Fφ−1 as maps of sets. Thus if we can show that Fφ takes closed sets to
closed sets, we are done. Let V (a) ⊆ Pn be a closed set, where a ⊆ C[x0, . . . , xn]
is a homogeneous radical ideal. Then

Fφ(V (a)) = {Fφ(p) ∈ Pn : f(p) = 0 ∀f ∈ a} =

=
{

q ∈ Pn : f(F−1
φ (q)) = 0 ∀f ∈ a

}
.

For every homogeneous polynomial f ∈ a we define a homogeneous polynomial
of degree deg f as

f̃(x0, . . . , xn) = f(φ−1(x0, . . . , xn)).

Then
Fφ(V (a)) =

{
q ∈ Pn : f̃(q) = 0 ∀f ∈ a

}
= V (b),

where b ⊆ C[x0, . . . , xn] is the ideal generated by the polynomials
{

f̃ : f ∈ a
}

.
This shows that Fφ maps closed sets to closed sets, and thus Fφ is a homeomor-
phism.

To show that Fφ is an isomorphism, let U ⊆ Pn be an open set, and let h =
f/g ∈ O(U) be a regular function, where f, g ∈ C[x0, . . . , xn] are homogeneous
polynomials of the same degree. Then we must check that h ◦ Fφ is a regular
function on F−1

φ (U). But h ◦ Fφ is represented by the rational function

f(φ(x0, . . . , xn))
g(φ(x0, . . . , xn))
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which is a quotient of polynomials of the same degree, where the denominator
never vanishes on F−1

φ (U) = Fφ−1(U). This shows that h ◦ Fφ is a regular
function, so Fφ is a morphism and thus an isomorphism.

Definition 1. Two projective varieties X, Y ⊆ Pn are said to be linearly
isomorphic if there is some φ ∈ GLn+1(C) such that Y = Fφ(X).

Assignment 2. Let f ∈ C[x0, . . . , xn] be a homogeneous polynomial of degree
2. The corresponding variety V (f) ⊆ Pn is called a quadric. Define a function
Qf : Cn+1 × Cn+1 −→ C by

Qf (u, v) =
f(u + v)− f(u)− f(v)

2
.

(a) Show that Qf is a bilinear symmetric form.

(b) Let Q∗
f denote the linear map corresponding to Qf . Define the rank of the

polynomial f as rk(f) = rank(Q∗
f ). Show that two quadrics V (f1), V (f2) ⊆

Pn are linearly isomorphic if and only if rk(f1) = rk(f2).

(c) By the above we have that a quadric V (f) ⊆ Pn is reducible (irreducible)
iff rk(f) = rk(g) where V (g) ⊆ Pn is reducible (irreducible). Using this,
determine for a given integer i ≥ 1 whether the quadrics of rank i in Pn

are reducible or irreducible.

Proof of (a). Let x = (x0, . . . , xn) and y = (y0, . . . , yn) be two sets of variables.
The polynomial f is of the form

f(x) =
∑
i≤j

αijxixj = xT Ax

where A is the matrix defined by

(A)ij =


αii if i = j,
αij

2 if i < j,
αji

2 if j < i.

We note that A is symmetric. We have

Qf (x, y) =
1
2
((x + y)T A(x + y)− xT Ax− yT Ay) =

1
2
(xT Ay + yT Ax) =

=
1
2
yT (A + AT )x = yT Ax.

This shows that Qf is a bilinear symmetric form.

Proof of (b). Let f1, f2 ∈ C[x0, . . . , xn] be two homogeneous quadratic poly-
nomials, and let A1 = Q∗

f1
and A2 = Q∗

f2
. Assume first that V (f1) and

V (f2) are linearly isomorphic. Thus there is some φ ∈ GLn+1(C) such that
V (f2) = Fφ(V (f1)). From Assignment 1 we have that V (f2) = V (f̃1), where

f̃1(x0, . . . , xn) = f1(φ−1(x0, . . . , xn)).
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Thus
√

(f2) =
√

(f̃1), and since f2 and f̃1 are both of degree two, this means

that f2 = αf̃1 for some non-zero α ∈ C.
Let B be the matrix corresponding to the linear map φ−1. Then

f2(x) = xT A2x = α(Bx)T A1(Bx) = xT (αBT A1B)x.

Therefore A2 = αBT A1B where B is invertible. This shows that rank(A1) =
rank(A2), and so rk(f1) = rk(f2).

Next assume that rk(f1) = rk(f2). Then, since A1 and A2 are symmetric of
the same rank, we can by Paragraph 1.7.8 in Boij/Laksov find an invertible
matrix S such that A2 = ST A1S. Thus

f2(x) = xT A2x = xT ST A1Sx = (Sx)A1(Sx).

If we let φ−1 be the linear map corresponding to the matrix S, we have that
f2 = f̃1, and so V (f2) = Fφ(V (f1)). This shows that V (f1) and V (f2) are
linearly isomorphic.

Proof of (c). For i = 1 one has that all quadratic polynomials whose associ-
ated matrix has rank 1 must be a square of a linear polynomial. Thus the
corresponding variety is a linear variety, and thus irreducible.

For i = 2 we consider the polynomial f2 = x0x1. This corresponds to a
reducible variety V (f2) = V (x0)∪V (x1), and the corresponding (n+1)×(n+1)-
matrix is

Q∗
f2

=


0 1/2 0 · · · 0

1/2 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0


which has rank 2. Thus all quadrics of rank 2 in Pn are reducible.

For i = 3, consider the polynomial f3 = x2
0 + x2

1 + x2
2. By viewing f3 as

a polynomial in (C[x0, x1])[x2] and choosing p = x0 + ix1 ∈ C[x0, x1] we have
by the Eisenstein criterion that f3 is irreducible. Its corresponding matrix is
a diagonal matrix with 1 as first three elements and 0 as the rest. Thus the
matrix has rank 3, so all polynomials of rank 3 are irreducible.

For i > 3 we choose the polynomial fi = x2
0 + . . . + x2

i . By induction the
polynomial x2

0 + . . . + x2
i−1 is irreducible, and so we can use Eisenstein criterion

again to conclude that fi is irreducible. By the same argument as the case i = 3,
its corresponding matrix will have rank i.

The conclusion is that a quadric V (f) ⊆ Pn is reducible iff rk(f) = 2.

Assignment 3. Consider the map d : sl2(C) −→ C defined by

sl2(C) 3 A 7−→ d(A) = det A ∈ C.

We identify sl2(C) with C3 by the isomorphism

sl2(C) 3
(

x y
z −x

)
←→ (x, y, z) ∈ C3.

For each t ∈ C define Xt = d−1(t) ⊆ C3.
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(a) Show that Xt ⊆ C3 is an irreducible affine variety for each t ∈ C.

(b) We let C[x, y, z, w] be the homogeneous coordinate ring of P3. Then we
identify C3 with the open subset D(w) = P3 − V (w) ⊆ P3.

Let t ∈ C. Show that there is a unique quadratic homogeneous polynomial
ft ∈ C[x, y, z, w] such that V (ft) ∩D(w) ∼= Xt ⊆ C3.

(c) Show that rk(ft) = 4 if t 6= 0 and that rk(f0) = 3.

Proof of (a). We have for each t ∈ C, that Xt = V (x2 +yz + t). But we can use
for instance the Eisenstein criterion to deduce that the polynomial x2 + yz + t
is irreducible for each t ∈ C. Thus the corresponding variety must also be
irreducible.

Proof of (b). We let ft ∈ C[x, y, z, w] be the homogeneous polynomial

ft = x2 + yz + tw2.

We now have an isomorphism between V (ft) ∩D(w) and Xt defined by

V (ft) ∩D(w) −→ Xt

(a0 : a1 : a2 : a3) −→ (a0/a3, a1/a3, a2/a3)
(b0 : b1 : b2 : 1) ←− (b0, b1, b2)

Proof of (c). Since we have

ft(x, y, z, w) = x2 + yz + tw2 =
(
x y z w

) 
1 0 0 0
0 0 1/2 0
0 1/2 0 0
0 0 0 t




x
y
z
w


we have by Assignment 2(a) that

Q∗
ft

=


1 0 0 0
0 0 1/2 0
0 1/2 0 0
0 0 0 t

 .

Thus it is clear by inspection that the rank of the matrix Q∗
ft

is 4 if t 6= 0, and
that the rank is 3 if t = 0.
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