KTH Matematik

5B1456, Matrix Algebra Final assignment due Dec. 6, 2004

(1) Let $\phi \in GL_{n+1}(\mathbb{C})$. Show that if $L \subset \mathbb{C}^{n+1}$ is a vector subspace of dimension 1, then $\phi(L)$ is a vector subspace of the same dimension. Prove that the assignment:

$$\mathbb{P}^n_{\mathbb{C}} \ni L \mapsto \phi(L) := \phi(L) \in \mathbb{P}^n_{\mathbb{C}}$$

is a well defined continuous map, which is an ismorphism of topological spaces.

We say that two projective varieties V(I), V(J) are *linearly isomorphic* if there is $\phi \in GL_{n+1}(\mathbb{C})$ such that $\overline{\phi}(V(I)) = V(J)$.

Let $Q(x_0, ..., x_n) \in \mathbb{C}[x_0, ..., x_n]$ be a homogeneous polynomial of degree 2. The projective variety V(Q) is called a quadric in \mathbb{P}^n . Define a function $Q : \mathbb{C}^{n+1} \times \mathbb{C}^{n+1} \to \mathbb{C}$ by the formula:

$$\mathcal{Q}(v,w) = \frac{Q(v+w) - Q(v) - Q(w)}{2}$$

- (2) Show that \mathcal{Q} is a biliner symmetric form.
- (3) Let \mathcal{Q}^* be the associated linear map. Define the rank of Q as $\operatorname{rk}(Q) = \operatorname{rank}(\mathcal{Q}^*)$. Show that two quadrics $V(Q_1)$ and $V(Q_2)$ are linearly isomorphic if and only if $rk(Q_1) = rk(Q_2)$.
- (4) For each n = 1, 2, 3 give an example of rank for which V(Q) is REDUCIBLE.

Consider the determinant map det : $sl_2(\mathbb{C}) \to \mathbb{C}$. Let $t \in \mathbb{C}$. Define $V_t := det^{-1}(t)$ (the preimage of t).

(5) Identify $sl_2(\mathbb{C})$ with \mathbb{C}^3 via the isomorphism: $\begin{pmatrix} x & y \\ z & -x \end{pmatrix} \mapsto (x, y, z)$. Show that, for every $t \in \mathbb{C}, V_t$ is an irreducible affine variety in \mathbb{C}^3 .

Consider the inclusion $\mathbb{C}^3 \subset \mathbb{P}^3$ given by $(z_1, z_2, z_3) \mapsto$ the line in \mathbb{C}^4 through $(z_1, z_2, z_3, 1)$.

- (6) Show that there is a unique quadric $V(Q_t) \subset \mathbb{P}^3$ such that $V_t = V(Q_t) \cap \mathbb{C}^3$.
- (7) Show that $rk(Q_t) = 4$ if $t \neq 0$ and that $rk(Q_0) = 3$.

Complementary problem.

Two affine varieties V(I) and V(J) in \mathbb{C}^n are said to be linearly isomorphic if there is a linear map $\alpha \in GL_n(\mathbb{C})$ and a translation α_P of \mathbb{C}^n such that $(\alpha \circ \alpha_P)(V(I)) = V(J)$.

(A) Show that for every $t \neq 0$ V_t is linearly isomorphic to V_1 but it is not linearly isomorphic to V_0 .