5B1456, Matrix Algebra
 Final assignment
 due Dec. 6, 2004

(1) Let $\phi \in G L_{n+1}(\mathbb{C})$. Show that if $L \subset \mathbb{C}^{n+1}$ is a vector subspace of dimension 1 , then $\phi(L)$ is a vector subspace of the same dimension. Prove that the assignment:

$$
\mathbb{P}_{\mathbb{C}}^{n} \ni L \mapsto \bar{\phi}(L):=\phi(L) \in \mathbb{P}_{\mathbb{C}}^{n}
$$

is a well defined continuous map, which is an ismorphism of topological spaces.
We say that two projective varieties $V(I), V(J)$ are linearly isomorphic if there is $\phi \in$ $G L_{n+1}(\mathbb{C})$ such that $\bar{\phi}(V(I))=V(J)$.

Let $Q\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree 2 . The projective variety $V(Q)$ is called a quadric in \mathbb{P}^{n}. Define a function $\mathcal{Q}: \mathbb{C}^{n+1} \times \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ by the formula:

$$
\mathcal{Q}(v, w)=\frac{Q(v+w)-Q(v)-Q(w)}{2}
$$

(2) Show that \mathcal{Q} is a biliner symmetric form.
(3) Let \mathcal{Q}^{*} be the associated linear map. Define the rank of Q as $\operatorname{rk}(Q)=\operatorname{rank}\left(\mathcal{Q}^{*}\right)$. Show that two quadrics $V\left(Q_{1}\right)$ and $V\left(Q_{2}\right)$ are linearly isomorphic if and only if $\operatorname{rk}\left(Q_{1}\right)=$ $r k\left(Q_{2}\right)$.
(4) For each $n=1,2,3$ give an example of rank for which $V(Q)$ is REDUCIBLE.

Consider the determinant map det $: \operatorname{sl}_{2}(\mathbb{C}) \rightarrow \mathbb{C}$. Let $t \in \mathbb{C}$. Define $V_{t}:=\operatorname{det}^{-1}(t)$ (the preimage of t).
(5) Identify $\operatorname{sl}_{2}(\mathbb{C})$ with \mathbb{C}^{3} via the isomorhism: $\left(\begin{array}{cc}x & y \\ z & -x\end{array}\right) \mapsto(x, y, z)$. Show that, for every $t \in \mathbb{C}, V_{t}$ is an irreducible affine variety in \mathbb{C}^{3}.

Consider the inclusion $\mathbb{C}^{3} \subset \mathbb{P}^{3}$ given by $\left(z_{1}, z_{2}, z_{3}\right) \mapsto$ the line in \mathbb{C}^{4} through $\left(z_{1}, z_{2}, z_{3}, 1\right)$.
(6) Show that there is a unique quadric $V\left(Q_{t}\right) \subset \mathbb{P}^{3}$ such that $V_{t}=V\left(Q_{t}\right) \cap \mathbb{C}^{3}$.
(7) Show that $r k\left(Q_{t}\right)=4$ if $t \neq 0$ and that $r k\left(Q_{0}\right)=3$.

Complememtary problem.

Two affine varieties $V(I)$ and $V(J)$ in \mathbb{C}^{n} are said to be linearly isomorphic if there is a linear $\operatorname{map} \alpha \in G L_{n}(\mathbb{C})$ and a translation α_{P} of \mathbb{C}^{n} such that $\left(\alpha \circ \alpha_{P}\right)(V(I))=V(J)$.
(A) Show that for every $t \neq 0 V_{t}$ is linearly isomorphic to V_{1} but it is not linearly isomorphic to V_{0}.

