KTH Matematik

5B1456, Matrix Algebra Assignment 7 due Nov. 8, 2004

- (1) Let X be a topological space. Show that:
 - (a) If X is irreducible then every open subset is dense.
 - (b) $Y \subset X$ irreducible if and only if \overline{Y} is irreducible.
 - (c) Let Y be a topological space and $f: X \to Y$ be a continuous map. Show that the image of an irreducible subspace is irreducible.

The following proves that a topological space is Noetherian if and only if it is universally compact.

- (2) Let X be a topological space. Show that the following statements are quivalent:
 - (a) X is Noetherian.
 - (b) Every open $Y \subseteq X$ is compact.
 - (c) Every subspace $Y \subseteq X$ is compact.