5B1456, , Matrix Algebra
 Assignment 4 due Oct. 4, 2004

Let $A \in M_{n}(F)$ be a skew-symmetric matrix.
(1) Show that $\operatorname{det}(A)=0$ if n is odd.
(2) Show that $\operatorname{det}(A)$ is a square if n is even.
(3) Assume that n is even and write $\operatorname{det}(A)=(\operatorname{Pf}(\mathrm{A}))^{2}(\operatorname{Pf}(\mathrm{~A})$ is called the Pfaffian of A). Show that for every invertible matrix P is

$$
\operatorname{Pf}\left(P A P^{t}\right)=\operatorname{det}(P) \operatorname{Pf}(A)
$$

