KTH Matematik

5B1456, , Matrix Algebra Assignment 3 due Sep. 27, 2004

(1) Let V be a finite dimensional vector space over a field K. Choose a basis β of V and define the map:

$$Tr: Hom_K(V, V) \to K, \ Tr(T) = Trace([T]_{\beta})$$

where $[T]_{\beta} \in M_n(K)$ is the matrix associated to T with respect to the basis β .

- (a) Show that Tr(AB) = Tr(BA).
- (b) Prove that the definition of Tr is independent on the choice of the basis and that Tr is a K-linear transformation. Is it a ring-homomorphism?
- (2) Let L be a field and $K \hookrightarrow L$ be a subfield such that L is a finite dimensional vector space over K. For every $e \in L$ denote by the same symbol the multiplication map

$$e: L \to L, \quad e(x) = ex.$$

It is a K-linear transformation.

- (a) Show that $B: L \times L \to K$, defined as $B(e_1, e_2) = Tr(e_1e_2)$ is a bilinear form.
- (b) Write the form explicitly for $\mathbb{R} \hookrightarrow \mathbb{C}$.
- (c) Prove that if char(K)=0 then B is non-degenerate.