The field k is the coefficient ring of the ring of M. The degree i may be a multi-degree, represented as a list of integers.
i1 = R = ZZ/101[a..c] o1 = R o1 : PolynomialRing
i2 = f = basis(2,R) o2 = | a2 ab ac b2 bc c2 | 1 ZZ 6 o2 : Matrix R <--- (---) 101A map of R-modules can be obtained by tensoring.
i3 = f ** R o3 = | a2 ab ac b2 bc c2 | 1 6 o3 : Matrix R <--- R
i4 = basis(2, ideal(a,b,c)/ideal(a^2,b^2,c^2)) o4 = | b c 0 | | 0 0 c | | 0 0 0 | o4 : Matrix
i5 = basis(R/(a^2-a*b, b^2-c^2, b*c)) o5 = | 1 a ab ac ac2 b c c2 | R 1 ZZ 8 o5 : Matrix (--------------------) <--- (---) 2 2 2 101 a - a b,b - c ,b c
i6 = S = ZZ/101[x,y,z,Degrees=>{{1,3},{1,4},{1,-1}}] o6 = S o6 : PolynomialRing
i7 = basis({7,24}, S) o7 = | x4y3 | 1 ZZ 1 o7 : Matrix S <--- (---) 101
Go to main index.
Go to concepts index.