i1 = R = ZZ/101[a..d] o1 = R o1 : PolynomialRing
i2 = I = monomialCurve(R,{1,3,4}) o2 = ideal | bc-ad c3-bd2 ac2-b2d b3-a2c | o2 : Ideal
i3 = A = R/I o3 = A o3 : QuotientRing
i4 = jacobian A o4 = | 0 c2 -d -2ac | | -d2 -2bd c 3b2 | | 3c2 2ac b -a2 | | -2bd -b2 -a 0 | 4 4 o4 : Matrix A <--- AFor a one row matrix, the derivatives w.r.t. all the variables is given
i5 = R = ZZ/101[a..c] o5 = R o5 : PolynomialRing
i6 = p = symmetricPower(2,vars R) o6 = | a2 ab ac b2 bc c2 | 1 6 o6 : Matrix R <--- R
i7 = jacobian p o7 = | 2a b c 0 0 0 | | 0 a 0 2b c 0 | | 0 0 a 0 b 2c | 3 6 o7 : Matrix R <--- RCaveat: if a matrix or ideal over a quotient polynomial ring S/J is given, then only the derivatives of the given elements are computed and NOT the derivatives of elements of J.
Go to main index.
Go to concepts index.