It is assumed that f and g both have the same target. For example,
i1 = R = ZZ/101[a..f] o1 = R o1 : PolynomialRing
i2 = f = matrix {{a^2, b*c, c*d}, {a-b, c-d, e-f}} o2 = | a2 bc cd | | a-b c-d e-f | 2 3 o2 : Matrix R <--- R
i3 = g = genericMatrix(R, a, 2, 3) o3 = | a c e | | b d f | 2 3 o3 : Matrix R <--- R
i4 = f | g o4 = | a2 bc cd a c e | | a-b c-d e-f b d f | 2 6 o4 : Matrix R <--- RIf one of the arguments is ring element or an integer, then it will be multiplied by a suitable identity matrix.
i5 = f | 1 o5 = | a2 bc cd 1 0 | | a-b c-d e-f 0 1 | 2 5 o5 : Matrix R <--- R
See also ||.
Go to main index.
Go to concepts index.