poincare

poincare C -- encodes information about the degrees of basis elements of a free chain complex in a polynomial.
poincare M -- the same information about the free resolution of a module M.

The polynomial has a term (-1)^i T_0^(d_0) ... T_(n-1)^(d_(n-1)) in it for each basis element of C_i with multi-degree {d_0,...,d_(n-1)}. When the multi-degree has a single component, the term is (-1)^i T^(d_0).

The variable T is defined in a hidden local scope, so will print out as $T and not be directly accessible.

     i1 = R = ZZ/101[x_0 .. x_3,y_0 .. y_3]
     
     o1 = R
     
     o1 : PolynomialRing
     
     i2 = m = matrix table (2, 2, (i,j) -> x_(i+2*j))
     
     o2 = | x_0 x_2 |
          | x_1 x_3 |
     
                  2       2
     o2 : Matrix R  <--- R
     
     i3 = n = matrix table (2, 2, (i,j) -> y_(i+2*j))
     
     o3 = | y_0 y_2 |
          | y_1 y_3 |
     
                  2       2
     o3 : Matrix R  <--- R
     
     i4 = f = flatten (m*n - n*m)
     
     o4 = | x_2y_1-x_1y_2 x_1y_0-x_0y_1+x_3y_1-x_1y_3 -x_2y_0+x_0y_2-x_3y_2+x_2y_3 -x_2y_1+x_1y_2 |
     
                  1       4
     o4 : Matrix R  <--- R
     
     i5 = poincare cokernel f
     
              3       2
     o5 = 2 $T  - 3 $T  + 1
     
     o5 : ZZ[ZZ^1]
     

(cokernel f).poincare = p -- inform the system that the Poincare polynomial of the cokernel of f is p. This can speed the computation of a Groebner basis of f.

     i6 = R = ZZ/101[t_0 .. t_17]
     
     o6 = R
     
     o6 : PolynomialRing
     
     i7 = T = (degreesRing R)_0
     
     o7 = $T
     
     o7 : ZZ[ZZ^1]
     
     i8 = f = genericMatrix(R,t_0,3,6)
     
     o8 = | t_0 t_3 t_6 t_9  t_12 t_15 |
          | t_1 t_4 t_7 t_10 t_13 t_16 |
          | t_2 t_5 t_8 t_11 t_14 t_17 |
     
                  3       6
     o8 : Matrix R  <--- R
     
     i9 = (cokernel f).poincare = 3-6*T+15*T^2-20*T^3+15*T^4-6*T^5+T^6
     
            6       5        4        3        2
     o9 = $T  - 6 $T  + 15 $T  - 20 $T  + 15 $T  - 6 $T + 3
     
     o9 : ZZ[ZZ^1]
     
     i10 = gb f
     
     o10 = gb | t_0 t_3 t_6 t_9  t_12 t_15 |
              | t_1 t_4 t_7 t_10 t_13 t_16 |
              | t_2 t_5 t_8 t_11 t_14 t_17 |
     
     o10 : GroebnerBasis
     
Keys used:
  • poincareComputation
  • Go to main index.

    Go to concepts index.