If r is nonzero, then M and N should be equal, or differ at most by a degree (i.e., by tensoring with a graded free module of rank 1).
i1 = R = ZZ/101[x] o1 = R o1 : PolynomialRing
i2 = map(R^2,R^3,0) o2 = 0 2 3 o2 : Matrix R <--- R
i3 = map(R^2,R^2,x) o3 = | x 0 | | 0 x | 2 2 o3 : Matrix R <--- R
i4 = q = map(R^2,R^2,x,Degree=>1) o4 = | x 0 | | 0 x | 2 2 o4 : Matrix R <--- R
i5 = isHomogeneous q o5 = true
Go to main index.
Go to concepts index.