i1 = R = ZZ/101[a,b];
i2 = m = symmetricPower(3, vars R) o2 = | a3 a2b ab2 b3 | 1 4 o2 : Matrix R <--- R
i3 = rank source m o3 = 4
i4 = S = ZZ/101[s_1 .. s_oo] o4 = S o4 : PolynomialRing
i5 = f = map(R,S,m) o5 = map(R,S,| a3 a2b ab2 b3 |) o5 : RingMap R <--- S
i6 = f s_2 2 o6 = a b o6 : R
i7 = f vars S o7 = | a3 a2b ab2 b3 | 1 4 o7 : Matrix R <--- R
i8 = kernel f o8 = ideal | s_3^2-s_2s_4 s_2s_3-s_1s_4 s_2^2-s_1s_3 | o8 : Ideal
i9 = generators oo o9 = | s_3^2-s_2s_4 s_2s_3-s_1s_4 s_2^2-s_1s_3 | 1 3 o9 : Matrix S <--- S
i10 = f oo o10 = 0 1 3 o10 : Matrix R <--- R
i11 = U = ZZ/101[t,u,v] o11 = U o11 : PolynomialRing
i12 = g = map(S,U,{s_1+s_2, s_2 + s_3, s_3+s_4}) o12 = map(S,U,| s_1+s_2 s_2+s_3 s_3+s_4 |) o12 : RingMap S <--- U
i13 = f g o13 = map(R,U,| a3+a2b a2b+ab2 ab2+b3 |) o13 : RingMap R <--- U
i14 = kernel oo o14 = ideal | u2-tv | o14 : Ideal
i15 = f g generators oo o15 = 0 1 1 o15 : Matrix R <--- R
The class of all ring maps is RingMap.
Go to main index.
Go to concepts index.