map(Ring,Ring,...)

map(R,S,m) -- sets up a ring homomorphism from S to R which sends the i-th variable of S to the i-th element of the list m . Alternatively, m may be a 1 by n matrix over R , where n is the number of variables in the polynomial ring S ; or it may be a square matrix over the common coefficient ring of the two rings, in which case it is used as the matrix of a linear change of coordinates.
     i1 = R = ZZ/101[a,b];
     
     i2 = m = symmetricPower(3, vars R)
     
     o2 = | a3 a2b ab2 b3 |
     
                  1       4
     o2 : Matrix R  <--- R
     
     i3 = rank source m
     
     o3 = 4
     
     i4 = S = ZZ/101[s_1 .. s_oo]
     
     o4 = S
     
     o4 : PolynomialRing
     
     i5 = f = map(R,S,m)
     
     o5 = map(R,S,| a3 a2b ab2 b3 |)
     
     o5 : RingMap R <--- S
     
     i6 = f s_2
     
           2
     o6 = a  b
     
     o6 : R
     
     i7 = f vars S
     
     o7 = | a3 a2b ab2 b3 |
     
                  1       4
     o7 : Matrix R  <--- R
     
     i8 = kernel f
     
     o8 = ideal | s_3^2-s_2s_4 s_2s_3-s_1s_4 s_2^2-s_1s_3 |
     
     o8 : Ideal
     
     i9 = generators oo
     
     o9 = | s_3^2-s_2s_4 s_2s_3-s_1s_4 s_2^2-s_1s_3 |
     
                  1       3
     o9 : Matrix S  <--- S
     
     i10 = f oo
     
     o10 = 0
     
                   1       3
     o10 : Matrix R  <--- R
     
     i11 = U = ZZ/101[t,u,v]
     
     o11 = U
     
     o11 : PolynomialRing
     
     i12 = g = map(S,U,{s_1+s_2, s_2 + s_3, s_3+s_4})
     
     o12 = map(S,U,| s_1+s_2 s_2+s_3 s_3+s_4 |)
     
     o12 : RingMap S <--- U
     
     i13 = f g
     
     o13 = map(R,U,| a3+a2b a2b+ab2 ab2+b3 |)
     
     o13 : RingMap R <--- U
     
     i14 = kernel oo
     
     o14 = ideal | u2-tv |
     
     o14 : Ideal
     
     i15 = f g generators oo
     
     o15 = 0
     
                   1       1
     o15 : Matrix R  <--- R
     

The class of all ring maps is RingMap.

Go to main index.

Go to concepts index.