component example

The following simple example illustrates the use of removeLowestDimension,top,radical, and decompose.
     i1 = R = ZZ/32003[a..d]
     
     o1 = R
     
     o1 : PolynomialRing
     
     i2 = I = monomialCurve(R,{1,3,4})
     
     o2 = ideal | bc-ad c3-bd2 ac2-b2d b3-a2c |
     
     o2 : Ideal
     
     i3 = J = ideal(a^3,b^3,c^3-d^3)
     
     o3 = ideal | a3 b3 c3-d3 |
     
     o3 : Ideal
     
     i4 = I = intersect(I,J)
     
     o4 = ideal | b4-a3d ab3-a3c bc4-ac3d-bcd3+ad4 c6-bc3d2-c3d3+bd5 ac5-b2c3d-ac2d3+b2d4 a2c4-a3d3+b3d3-a2cd3 b3c3-a3d3 ab2c3-a3cd2+b3cd2-ab2d3 a2bc3-a3c2d+b3c2d-a2bd3 a3c3-a3bd2 a4c2-a3b2d |
     
     o4 : Ideal
     
     i5 = removeLowestDimension I
     
     o5 = ideal | bc-ad c3-bd2 ac2-b2d b3-a2c |
     
     o5 : Ideal
     
     i6 = top I
     
     o6 = ideal | bc-ad c3-bd2 ac2-b2d b3-a2c |
     
     o6 : Ideal
     
     i7 = radical I
     
     o7 = ideal | bc-ad ac2-b2d b3-a2c c6-c3d3-b2d4+bd5 |
     
     o7 : Ideal
     
     i8 = decompose I
     
     o8 = {ideal | -c+d b a |,ideal | c2+cd+d2 b a |,ideal | bc-ad c3-bd2 ac2-b2d b3-a2c |}
     
     o8 : List
     

Go to main index.

Go to concepts index.