i1 = R = ZZ/101[a..f] o1 = R o1 : PolynomialRing
i2 = monomialCurve(R,{3,5}) o2 = ideal | b5-a2c3 | o2 : IdealAnd a genus 2 curve with one singular point:
i3 = monomialCurve(R,{3,4,5}) o3 = ideal | c2-bd b2c-ad2 b3-acd | o3 : IdealTwo singular points, genus = 7:
i4 = monomialCurve(R,{6,7,8,9,11}) o4 = ideal | de-bf e2-cf cd-be d2-ce c2-bd bce-af2 b2d-aef b2c-adf b3-acf | o4 : IdealFinally, the smooth rational quartic in P^3
i5 = monomialCurve(R,{1,3,4}) o5 = ideal | bc-ad c3-bd2 ac2-b2d b3-a2c | o5 : Ideal
Go to main index.
Go to concepts index.