Whether f is null homotopic is not checked.
Here is part of an example provided by Luchezar Avramov. We construct a random module over a complete intersection, resolve it over the polynomial ring, and produce a null homotopy for the map which is multiplication by one of the defining equations for the complete intersection.
i1 = A = ZZ/101[x,y] o1 = A o1 : PolynomialRing
i2 = M = cokernel random(A^3, A^{-2,-2}) o2 = cokernel | 16x2-25xy-13y2 -14x2-20xy-41y2 | | -27x2+11xy-43y2 -28x2+14xy-40y2 | | 12x2-43xy-8y2 -46x2-2xy-16y2 | 3 A - module, quotient of A
i3 = R = cokernel matrix {{x^3,y^4}} o3 = cokernel | x3 y4 | 1 A - module, quotient of A
i4 = N = prune (M**R) o4 = cokernel | -47x2-19xy+34y2 -47x2+24xy-2y2 x3 x2y-26xy2+y3 -3xy2+49y3 0 0 y4 | | 41xy+38y2 x2-21xy-32y2 0 -47xy2+13y3 4xy2+38y3 0 y4 0 | | x2+36xy+2y2 26xy-32y2 0 6y3 xy2+48y3 y4 0 0 | 3 A - module, quotient of A
i5 = C = resolution N 3 8 5 o5 = A <-- A <-- A 0 1 2 o5 : ChainComplex
i6 = d = C.dd 3 8 o6 = 1: A <--| 26xy-32y2 x2+36xy+2y2 0 6y3 xy2+48y3 0 0 y4 |-- A | x2-21xy-32y2 41xy+38y2 0 -47xy2+13y3 4xy2+38y3 0 y4 0 | | -47x2+24xy-2y2 -47x2-19xy+34y2 x3 x2y-26xy2+y3 -3xy2+49y3 y4 0 0 | 8 5 2: A <--| -48xy2+36y3 20xy2+26y3 48y3 -30y3 -39y3 |-- A | -3xy2-y3 -39y3 3y3 12y3 -39y3 | | 33xy-3y2 49xy+9y2 -33y2 21y2 19y2 | | -33x2-11xy+8y2 -49x2-40xy-17y2 33xy+14y2 -21xy-14y2 -19xy-3y2 | | 3x2-3xy+2y2 15xy-21y2 -3xy+4y2 -12xy+40y2 39xy-48y2 | | 0 0 x-14y 10y -33y | | 0 0 -23y x-27y -24y | | 0 0 42y 8y x+41y | o6 : ChainComplexMap
i7 = s = nullhomotopy (x^3 * id_C) 8 3 o7 = 0: A <--| -41y x+21y 0 |-- A | x-36y -26y 0 | | 47 47 1 | | 36 44 0 | | 37 18 0 | | 0 0 0 | | 0 0 0 | | 0 0 0 | 5 8 1: A <--| -6 -46 0 -37y 34x+31y xy+12y2 4xy-48y2 -13xy-22y2 |-- A | 7 -26 0 -33x+23y 41x-29y 47y2 xy+11y2 -4xy-11y2 | | 0 0 0 0 0 x2+14xy-6y2 -10xy+33y2 33xy-20y2 | | 0 0 0 0 0 23xy+36y2 x2+27xy+4y2 24xy+19y2 | | 0 0 0 0 0 -42xy+41y2 -8xy+27y2 x2-41xy+2y2 | o7 : ChainComplexMap
i8 = s*d + d*s 3 3 o8 = 0: A <--| x3 0 0 |-- A | 0 x3 0 | | 0 0 x3 | 8 8 1: A <--| x3 0 0 0 0 0 0 0 |-- A | 0 x3 0 0 0 0 0 0 | | 0 0 x3 0 0 0 0 0 | | 0 0 0 x3 0 0 0 0 | | 0 0 0 0 x3 0 0 0 | | 0 0 0 0 0 x3 0 0 | | 0 0 0 0 0 0 x3 0 | | 0 0 0 0 0 0 0 x3 | 5 5 2: A <--| x3 0 0 0 0 |-- A | 0 x3 0 0 0 | | 0 0 x3 0 0 | | 0 0 0 x3 0 | | 0 0 0 0 x3 | o8 : ChainComplexMap
i9 = s^2 o9 = 0 o9 : ChainComplexMap
Go to main index.
Go to concepts index.