This method allows all of the options available for monoids, see monoid for details. This routine essentially combines the variables of M and N into one monoid.
For rings, the rings should be quotient rings of polynomial rings over the same base ring.
Here is an example with monoids.
i1 = M = monoid[a..d, MonomialOrder => Eliminate 1] o1 = [a,b,c,d,MonomialOrder => Eliminate{1}] o1 : GeneralOrderedMonoid
i2 = N = monoid[e,f,g, Degrees => {1,2,3}] o2 = [e,f,g,Degrees => {{1},{2},{3}}] o2 : GeneralOrderedMonoid
i3 = P = tensor(M,N,MonomialOrder => GRevLex) o3 = [a,b,c,d,e,f,g,Degrees => {{1},{1},{1},{1},{1},{2},{3}},MonomialOrder => GRevLex] o3 : GeneralOrderedMonoid
i4 = describe P [a,b,c,d,e,f,g,Degrees=>{{1}, {1}, {1}, {1}, {1}, {2}, {3}},MonomialOrder=>GRevLex]
i5 = tensor(M,M,Variables => {x_0 .. x_7}, MonomialOrder => ProductOrder{4,4}) o5 = [x ,x ,x ,x ,x ,x ,x ,x ,MonomialOrder => ProductOrder{4,4}] 0 1 2 3 4 5 6 7 o5 : GeneralOrderedMonoid
i6 = describe oo [x_0,x_1,x_2,x_3,x_4,x_5,x_6,x_7,MonomialOrder=>ProductOrder{4, 4}]Here is a similar example with rings.
i7 = tensor(ZZ/101[x,y], ZZ/101[r,s], MonomialOrder => Eliminate 2) ZZ o7 = ---[x,y,r,s,MonomialOrder => Eliminate{2}] 101 o7 : PolynomialRing
See also **.
Go to main index.
Go to concepts index.