Module ** Ring

M ** R -- form the tensor product of a module M with a ring R.

The ring of M should be a base ring of R.

     i1 = R = ZZ/101[x,y];
     
     i2 = M = coker vars R
     
     o2 = cokernel | x y |
     
                                   1
          R - module, quotient of R
     
     i3 = M ** R[t]
     
     o3 = cokernel | x y |
     
                                           1
          R[t] - module, quotient of (R[t])
     

Go to main index.

Go to concepts index.