Problem 73\# 3.7 Solution

Problem 7: Prove
(*) $2^{-x}+2^{-1 / x} \leq 1$ for $x>0$.
Set $F(x)=2^{-x}+2^{-1 / x}$. Since $F(x)=F(1 / x)$ it is sufficient to prove (*) for $0<x \leq 1$.
Rewrite (${ }^{*}$) as follows:
$\left(^{*}\right) \quad \Leftrightarrow \quad 2^{-1 / x} \leq 1-2^{-x} \quad \Leftrightarrow \quad \ln \left(2^{-1 / x}\right) \leq \ln \left(1-2^{-x}\right) \quad \Leftrightarrow$
$\Leftrightarrow \quad f(x) \leq 0$, where $f(x)=-\frac{\ln 2}{x}-\ln \left(1-2^{-x}\right)$.
Now, $f(1)=0$ and we are done if we can prove that $f(x)$ increases in $0<x<1$.

$$
f^{\prime}(x)=\frac{\ln 2}{x^{2}}-\frac{\ln 2 \cdot 2^{-x}}{1-2^{-x}}=\frac{\ln 2}{x^{2}}-\frac{\ln 2}{2^{x}-1} .
$$

Hence, $f^{\prime}(x) \geq 0 \quad \Leftrightarrow \quad x^{2} \leq 2^{x}-1 \quad \Leftrightarrow \quad g(x)=x^{2}+1-2^{x} \leq 0$. But $g^{\prime \prime}(x)=2-\ln ^{2} 2 \cdot 2^{x}>0$ in $0<x<1 \quad$ and $g(0)=g(1)=0$.
Then $g(x) \leq 0$ by convexity in $0<x<1$, so $f^{\prime}(x) \geq 0$ there and hence $f(x)$ increases. QED.

