
Problem 73# 2.3 Solution

This proof has been attributed to Diaz-Metcalf.

Rewriting the given inequalities:
a ≤ ai ≤ A, b ≤ bi ≤ B to

abi ≤ aiB, aib ≤ Abi,
(aiB − abi)(Abi − aib) ≥ 0,
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But since (geometric/arithmetic inequality):
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and hence the following which is equivalent to the given inequality:
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