Problem73\# 1.6 Solution B

For simplicity we begin to consider the case of two kind of stamps, 1 p . and 2 p . Then a_{n}, the number of $n \mathrm{p}$. postage sequences, can be computed recursively by dividing these sequences into two groups, S_{1} that starts with a 1 p. stamp and S_{2} that starts with a 2p. stamp. Now the number of S_{1} sequences must be equal to the number of $n-1$ postage sequences that can follow the starting 1 p. stamp, i.e. a_{n-1}. Similarly the number of S_{2} sequences must be a_{n-2}. (Assume here for convenience that $a_{0}=1$. Also a_{1} must be 1). Hence $a_{n}=a_{n-1}+a_{n-2}, \quad n \geq 2, \quad a_{0}=a_{1}=1$.

The $a_{n}: s$ are of course recognized as the Fibonacci sequence which begins $1,1,2,3,5,8,13, \ldots$.

The function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ can be recovered as follows:
Note that $x f(x)+x^{2} f(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1}+\sum_{n=0}^{\infty} a_{n} x^{n+2}=$
$a_{0} x+\sum_{n=2}^{\infty}\left(a_{n-1}+a_{n-2}\right) x^{n}=a_{0} x+\sum_{n=2}^{\infty} a_{n} x^{n}=$
$a_{0} x+\left(f(x)-a_{0}-a_{1} x\right)=x+f(x)-1-x=f(x)-1$.
And so, $f(x)\left(1-x-x^{2}\right)=1, \quad f(x)=\frac{1}{1-x-x^{2}}$.
(Note that a power series expansion of this $f(x)$ will yield $f(x)=1+x+$ $2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+\ldots$, i.e. the expected Fibonacci coefficients.)

A repetition of the above arguments will take care of the given problem. With 1 p. , 2 p ., 3 p. and 4 p. stamps we get the recursion formula $a_{n}=$ $a_{n-1}+a_{n-2}+a_{n-3}+a_{n-4}$. Accordingly the corresponding function satisfies $x f(x)+x^{2} f(x)+x^{3} f(x)+x^{4} f(x)=f(x)-1$ which gives the solution $f(x)=\frac{1}{1-x-x^{2}-x^{3}-x^{4}}$.

