
SF2729 Groups and Rings
Exam

Wednesday, June 10, 2015

Time: 14:00-19:00
Allowed aids: none
Examiner: Wojciech Chachólski

Present your solutions to the problems in a way such that arguments and calculations are easy
to follow. Provide detailed arguments to your answers. An answer without explanation will be
given no points.

The final exam consists of six problems, each of which can give up to 6 points, for a sum of
36 points.

The final score is the better of the final exam score; and the weighted average of the final exam
score (75%) and the homework score (25%). The minimum scores required for each grade are
given by the following table:

Garde A B C D E Fx
Credit 30 27 24 21 18 16

A score of 16 or 17 is a failing grade with the possibility to improve to an E grade by additional
work.



Problem 1
For any element σ in the symmetric group Sn, let c(σ) denote the number of cycles in the cycle
decomposition of σ. Show that for n ≥ 2,

c((12)σ) = c(σ) + 1 or c(σ) or c(σ)− 1.

Solution.
Let all ai’s, bi’s, ci’s be different and different from 1 and 2. Note:

(12)(a1 · · · ak1) = (a1 · · · ak21)

(12)(a1 · · · ak2) = (a1 · · · ak12)

(12)(a1 · · · ak1b1 · · · bl2c1 · · · ct) = (a1 · · · ak2c1 · · · ct)(1b1 · · · bl)

(12)(a1 · · · ak1)(b1 · · · bl2) = (a1 · · · ak2b1 · · · bl1)

Write σ as a product of disjoint cycles.

• If none of these cycles contains 1 or 2, then clearly c((12)σ) = c(σ) + 1.

• If 1 is present in cycles of σ and not 2, or 2 is present and not 1, then according to the first
two equalities above c((12)σ) = c(σ).

• If both 1 and 2 are present in a single cycle of σ, then c((12)σ) = c(σ) + 1.

• If both 1 and 2 are present but in different cycles of σ, then c((12)σ) = c(σ)− 1.
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Problem 2. (6 points).
Let R and S be rings. Recall that a ring homomorphism f : R → S is a function such that
f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for any x and y in R. Let p be a prime integer
and n a natural number.

(a) Prove that any ring homomorphism f : R → Z/pnZ is either the 0 function or maps 1 in
R to 1 in Z/pn.

(b) Conclude that any non-zero ring homomorphism f : R→ Z/pnZ is surjective.

(c) Give an example of n and m and a non-zero ring homomorphism f : Z/mZ → Z/nZ
which is not surjective.

Solution.
(a) Since f(1) = f(1 · 1) = f(1)2, either f(1) = 0, in which case f(x) = f(1 · x) =

f(1)f(x) = 0x = 0 for all x, or f(1) is an element x such that x2−x = 0 in Z/pnZ. Since

(Z/pkZ)× = {[m] ∈ Z/pkZ | p - m},

one of x and x − 1 must be a unit and hence the other zero. Since we have already dealt
with the case x = 0, the only remaining possibility is x = f(1) = 1.

(b) im(f) is an additive subgroup of Z/pnZ which contains a generator (namely, 1), hence
im(f) = Z/pnZ.

(c) The smallest example is Z/2Z→ Z/6Z given by [1] 7→ [3]. One only needs to verify that
[3]2 = [9] = [3] ∈ Z/6Z.
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Problem 3. (6 points).
Let G be a group and N / G a normal subgroup of order 5 such that G/N ∼= S3, the symmetric
group on three letters. Show:

(a) |G| = 30;

(b) G has a normal subgroup of order 15;

(c) G has three non-normal subgroups of order 10.

Solution.
(a): Recall that |G| = |N ||G : N |. Since |G : N | = |S3| = 6, we get |G| = 5 · 6 = 30.

(b): Consider the following composition:

G→ G/N = S3
sign−−→ Z/2

Note that this composition is a surjective homomorphism. Its kernel is therefore a normal subgroup
of order 30/2 = 15.

(c): Let π : G → G/N = S3 be the quotient homomorphism. Let T ⊂ G be a subgroup of
order 10. The subgroup π(T ) ⊂ S3 is non trivial, since T is too big to be in the kernel of π.
The order of π(T ) divides the order of S3 = 6 and the order of T = 10. Thus |π(T )| = 2.
Consequently the kernel of π restricted to T is of order 5. It follows that N is a subgroup in T .

Let S be another subgroup of order 10 in G. We claim that S = T if and only if π(S) = π(T ).
If S = T , then clearly π(S) = π(T ). Assume π(S) = π(T ). Let s ∈ S. Choose t ∈ T such
that π(t) = π(s). Note that st−1 belongs to N = ker(π) and hence we can write s as a product
st−1t of an element st−1 in N and hence in T (see above) and an element t in T . It follows that
s belongs to T . We can conclude that S ⊂ T and hence S = T .

To finish the proof we just notice that S3 has tree different subgroup of order 2. This translates
into the statement thatG has 3 different subgroups of order 10. As none of the subgroups of order
2 in S3 is normal, the subgroups of order 10 in G can not be normal either.
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Problem 4. (6 points).
Let R be a UFD and S ⊂ R be a multiplicative subset. Show that R[S−1] is also a UFD.

Solution.
Let x ∈ R[S−1] be any nonzero element. Then x = y

s
where s ∈ S and y ∈ R. Since R is a UFD,

y = p1 · · · pk for prime elements pi. Then

1

s
p1 · · · pk

is a factorization into a unit times a product of primes. For uniqueness, assume

x = p1 · · · pk = q1 · · · ql ∈ R[S−1].

for primes pi and qj . There is an element s ∈ S such that spi ∈ R and sqj ∈ R for all i and j, for
instance the product of all the denominators. Assuming w.l.o.g. that l ≤ k, we have

skx = (sp1) · · · (spk) = sk−l(sq1) · · · (sql) ∈ R.

Since R was assumed to be a UFD, k = l and (possibly after reordering) spi = uisqi for some
units ui. Thus pi = uiqi and hence the decomposition is unique up to order and units.
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Problem 5. (6 points).
Show that a group of order 80 cannot be simple.

Solution.
We have the prime factorization 80 = 24 · 5. For the number of Sylow 5-subgroups n5 and of
Sylow 2-subgroups n2 we have

n5 ≡ 1 (mod 5), n5 | 16⇒ n5 = 1 or 16

and
n2 ≡ 1 (mod 2), n2 | 5⇒ n2 = 1 or 5.

If the group was simple, we would have n5 = 16 and n2 = 5. But that would lead to 16 · 4 = 64
elements of order 5 and at least 5 · (24 − 23) = 40 elements of order a power of 2, the latter
because any two Sylow 2-subgroups can intersect in a group of order up to 23. But this adds up
to 104 distinct elements already, which is impossible.
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Problem 6. (6 points).
Is the polynomial x3 + 4 reducible or irreducible in Q[x]?

Solution.
If we let x = y − 1, we have

x3 + 4 = (y − 1)3 + 4 = y3 − 3y2 + 3y + 3.

Eisenstein’s criterion applies for p = 3 since 3 divides all coefficients except for the leading one,
and 9 does not divide the constant coefficient. Hence x3+4 is irreducible in Z[x] and, by Gauss’s
lemma, also in Q[x].

Alternatively, a degree 3 polynomial is reducible if and only if it has a zero, and x3 + 4 has
one irrational and two imaginary roots in C, namely 3

√
−4, 3
√
−4ρ, 3

√
−4ρ2, where ρ is a primitive

third root of unity. Thus it has no rational roots.

7


