
Matematiska Institutionen
KTH

Solutions to homework number 2 to SF2736, fall 2012.

Please, deliver this homework at latest on Wednesday, November 14.

1. (0.1p) Let R be an equivalence relation on a set A. Assume that |A| =
45 and assume that R induces a partition of A into five equivalence
classes of equal size. Find |R|.

Solution. Each equivalence class Ci, i = 1, 2, 3, 4, 5, consist of 45/5 =
9 elements

Ci = {ai1, ai2, . . . , ai9}.

As R is an equivalence relation we have that for each i = 1, 2, 3, 4, 5,
and each pair j, j′ ∈ {1, 2, . . . , 9}, it is true that

aij ∼ aij′

or expressed in another way as

(ai,j, aij′) ∈ R.

So each equivalence class contributes with 9 · 9 = 81 elements to the
set R. As i 6= i′ implies that aij 6∼ ai′j′ , these five contributions to the
set R includes all contributions. Thus

Answer: 5 · 81 = 405.

2. (0.2p) Let R be a relation on a set A which is both transitive and
symmetric. Define

Ca = {x ∈ A | aRx}.

Is the following true

Ca 6= Cb =⇒ Ca ∩ Cb = ∅.

Solution. Yes. We first note that a set Ca 6= ∅ if and only if aRx
for at least one element x = xa ∈ A. We thus consider the subset A′
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of A consisting of those elements in A that are related to at least one
element x ∈ A. The restriction of R to A′ is an equivalence relation on
A′, as symmetry and transitivity gives that

aRxa ⇒
{

aRxa

xaRa
⇒ aRa.

The set Ca, as well as any set Cb, will thus be an equivalence class in A′.
We know that distinct equivalence classes, (to equivalence relations),
are mutually disjoint.

An alternative solution:

Assume that y is any element in Ca and that x ∈ Ca ∩ Cb. Then by
symmetry and transitivity we have that

a ∼ y
a ∼ x
b ∼ x

⇒


y ∼ a
a ∼ x
x ∼ b

⇒ y ∼ b ⇒ b ∼ y,

that is, y ∈ Cb. We have thus proved

Ca ∩ Cb 6= ∅ =⇒ Ca ⊆ Ca.

Similarly we can prove that

Ca ∩ Cb 6= ∅ =⇒ Cb ⊆ Ca.

These two implications thus imply that

Ca ∩ Cb 6= ∅ =⇒ Ca = Ca.

3. Let A = {1, 2, . . . , 9} and let R be the following relation on A:

R = {(1, 1), (2, 3), (3, 5), (7, 6), (7, 7), (8, 9)}.

(a) (0.1p) Find the smallest equivalence relation that contains R.

Solution. The equivalence relation that has the following five
equivalence classes:

C1 = {1}, C2 = {2, 3, 5}, C4 = {4}, C6 = {6, 7}, C8 = {8, 9}.
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(b) (0.2p) Find the number of equivalence relations that contain R.

Solution. The equivalence classes to an equivalence relation that
contains R must be unions of a choice of the five equivalence
classes above. So an equivalent problem is to find the number of
ways to partition the set {C1, C2, C4, C6, C8} into subsets. As we
now have learned about Stirling numbers, let us use that descrip-
tion.

The answer will be given by

S(5, 5) + S(5, 4) + S(5, 3) + S(5, 2) + S(5, 1).

Calculating these Stirling numbers using the recursion

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k),

we get the sum

1 + 10 + 25 + 15 + 1 = 52.

Answer: 52

4. (0.1p) Find and describe a bijective map that maps the set of real
numbers in the open interval (3, 7) onto the interval (2, 3).

Solution. Linear maps x 7→ ax + b are bijective maps. If we choose a
and b such that {

3a + b = 2
7a + b = 3

then the interval (3, 7) is mapped bijectively onto the interval (2, 3).

The system above is linear and thus easily solved, E.G. by using Gauss
elimination.

Answer: The map x 7→ 0.25x + 1.25.

5. (0.3p) Assume that A is a given countable infinite set and let B be the
set of all real numbers x that are solutions to some polynomial equation

a0 + a1x + a2x
2 + · · ·+ anx

n = 0,
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where ai ∈ A, for i = 0, 1, . . . , n. Is the set B countable infinite?

Solution. In case 0 ∈ A and for those that regard 0 = 0 as a poly-
nomial equation in the indeterminate x, then, as every real number
satisfies this equation, their answer in this case will be “No”.

But here we do not regard “0 = 0” as a polynomial equation.

We first show that the set of all solutions must be infinite. Let a1 be
a fixed non-zero element in A. Let S denote the set of solutions to the
equations

ax = a1, for a ∈ A.

Then
S = {a1

a
| a ∈ A \ {0}},

and consequently S is countable infinite.

By a proof, similar to the proof of the fact that the set of rational
numbers is countable infinite, one may prove that the direct product
A2 = A × A is countable infinite, and then inductively that An =
A × A × · · · × A is countable. We now note that the n : th degree
equations, with coefficients in A, are in one to one correspondence with
the elements of the direct product An+1.

Again, by a proof, similar to the proof of the fact that the set of rational
numbers is countable infinite, one may prove that the union of an infi-
nite set of mutually disjoint countable infinite sets is countable infinite.
This implies that the set of all polynomial equations with coefficients
in A is an infinite countable set:

{EQ1, EQ2, EQ3, . . .}.

The number of solutions of each such equation is finite. So we can now
enumerate all solutions to all these equations by first the enumeration of
the solutions of EQ1, then continue our enumeration with the solutions
of EQ2, etc. In our enumeration of the solutions, we do not give a
number to those real numbers already enumerated by us, we just skip
them.
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