${\bf Matematiska\ Institutionen} \\ {\bf KTH}$

Solutions to some of the problems in a the typical exam to the course Discrete Mathematics, SF2736, fall 12.

Observe:

- 1. Nothing else than pencils, rubbers, rulers and papers may be used.
- 2. Bonus points from the homeworks will be added to the sum of points on part I.
- 3. Grade limits: 13-14 points will give Fx; 15-17 points will give E; 18-21 points will give D; 22-27 points will give C; 28-31 points will give B; 32-36 points will give A.

Part I

- 1.
- 2.
- 3.
- 4.
- 5.

Part II

6. (a) (1p) Prove that gcd(a, b) divides lcm(a, b) for all integers a and b.

Solution.

$$gcd(a,b) \mid a \text{ and } a \mid lcm(a,b) \implies gcd(a,b) \mid lcm(a,b)$$

(b) (2p) Find the number of sets $\{x,y\}$ such that x and y are non negative integers and

$$gcd(x, y) = 60$$
 and $lcm(x, y) = 12600$.

Solution. We get

$$60 = 2^2 \cdot 3 \cdot 5$$
 and $12600 = 2^3 \cdot 3^2 \cdot 5^2 \cdot 7$.

As then

$$60 \mid x$$
 and $x \mid 12600 \implies x = 2^{e_1} \cdot 3^{e_2} \cdot 5^{e_3} \cdot 7^{e_4}$

where

$$(e_1, e_2, e_3, e_4) \in \{\{2, 3\} \times \{1, 2\} \times \{1, 2\} \times \{0, 1\}\}.$$

and similarly for $y = 2^{f_1} \cdot 3^{f_2} \cdot 5^{f_3} \cdot 7^{f_4}$. To get that the least common multiple of x and y is 12600 and the greatest common divisor equal to 60 it is necessary and sufficient that

$${e_1, f_1} = {2, 3}, {e_2, f_2} = {1, 2},$$

$${e_3, f_3} = {1, 2}, {e_4, f_4} = {0, 1},$$

This gives in total $2^4 = 16$ possibilities to get pairs (x, y) satisfying the required conditions. However, as we asked for the number of sets $\{x, y\}$, and $x \neq y$ in every feasibly pair, we have

Answer: 8.

7.

8.

Part III

9.

10. (5p) Let $\varphi(n)$ denote the number of integers $1 \leq m \leq n$ that are relatively prime to n. Show that for all positive integers n, and all prime numbers p, it is true that n divides $\varphi(p^n - 1)$.

Solution. Let $U(Z_m)$ denote the group of all invertible elements in the ring Z_m . Then

$$\gcd(p, p^n - 1) = 1 \implies p \in U(Z_{p^n - 1}) \implies o(p) \mid \varphi(p^n - 1),$$

as the size of the group $U(Z_{p^n-1})$ is $\varphi(p^n-1)$. But, $p^n=1$ in the ring Z_{p^n-1} and $p^k < p^n-1$ for $1 \le k < n$ so o(p)=n in the group $U(Z_{p^n-1})$. Thus n divides $\varphi(p^n-1)$.