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Matematiska Institutionen
KTH

Solutions to the exam to the course Discrete Mathematics, SF2736, May 31,
2013, 08.00–13.00.

Examiner: Olof Heden.

Observe:

1. You are not allowed to use anything else than pencils, rubber, rulers and papers at
this exam.

2. To get the maximum number of points on a problem it is not sufficient to just give
an answer, you must also provide explanations.

3. Bonus points from the homeworks will be added to the sum of the points on part I.

4. Grade limits: 13-14 points will give an Fx; 15-17 points will give an E; 18-21 points
will give a D; 22-27 points will give a C; 28-31 points will give a B; 32-36 points will
give an A.

Part I

1. (a) (1.5p) Find gcd(789, 1011).

Solution. The algorithm of Euclides gives

1011 = 789 + 222
789 = 4 · 222 − 99
222 = 2 · 99 + 24
99 = 3 · 24 + 3
24 = 8 · 3

ANSWER: 3

(b) (1.5p) Find 3450(mod 78).

Solution. We use the theorem of Euler. As 78 = 2 · 3 · 13, we get

ϕ(78) = 78(1− 1

2
)(1− 1

3
)(1− 1

13
) = 24.

Hence

3450 ≡78 (3424)2 · 342 ≡78 12 · 17 · 68 ≡78 17(−10) ≡78 −170 ≡78 −14.

ANSWER: 64.
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2. (3p) A connected graph G has 13 vertices, no multiple edges or loops. Which are
the possibilities for the number of edges of G.

Solution. A tree on 13 vertices has 12 edges. If any edge of a tree is deleted the
remaining graph will be disconnected. The minimum number of edges is thus 12.
The complete graph K13 on the vertices in the set V = {1, 2, . . . , 13} has 78 edges
as every edge corresponds to a 2-subset {x, y} of V , and the number of 2-subsets to
a set with 13 elements is 13 · 12/2.

Consider the subgraph T of K13 having the edges

E = {{1, 2}, {2, 3}, ..., {12, 13}}

Taking away any set of n edges from the edgeset of K13, except any from the set E
will give a connect graph with 78− n edges. Thus

ANSWER: The number of edges can be any integer e in the interval 12 ≤ e ≤ 78.

3. (3p) Let G be a cyclic group with 48 elements generated by the element g. There
is one and only one subgroup H to G of size 12. Show that H is cyclic and find all
generators of H.

Solution. Assume that the element g of G generates G. The subgroup H to G
generated by h = g4 has twelve elements

H = 〈h〉 = {h = g4, h2 = g8, . . . , h12 = g48 = e}.

An element k in H generates a subgroup of H with as many elements as the order
of k. We get that the group

H6 = 〈h2〉 = {h2, h4, h6, h8, h10, h12 = e}

is a subgroup of H with six elements all of an order that divides six. Similarly we
get

H4 = 〈h3〉 = {h3, h6, h9, e}, H3 = {h4, h8, e}, H2 = {h6, e}.

The elements not contained in any of these four subgroups to H have order twelve.
We thus get

ANSWER: The elements h = g4, h5 = g20, h7 = g28, and h11 = g44.

4. (3p) Find the generating function to the sequence a0, a1, ..., where a0 = 2, a1 = 3
and an = an−1 − 6an−2, for n = 2, 3, . . ..

Solution. For n = 2, 3, . . . we get the equalities

ant
n = tan−1t

n−1 − 6t2an−2t
n−2.

The requested generating function is A(t) =
∑∞

n=0 ant
n. By using the set of equalities

above we can derive the following equation for A(t):

A(t)− a1t− a0 = t(A(t)− a0)− 6t2A(t).
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Simplifications then give

A(t) =
2 + 5t

1− t+ 6t2
.

Hence

ANSWER: (2 + 5t)/(1− t+ 6t2)

5. (3p) Nine distinct guys shall ride in a row on bicycles. How many distinct rows can
then be formed if there are four green bikes, three red bikes and two yellow bikes,
else the bikes are indistinguishable.

Solution. We first place the bikes in a row. The number of ways this can be done
is given by a multinomial coefficient(

9

4, 3, 2

)
=

9!

4! · 3! · 2!
.

Then we place the guys on the nine bikes, which can be done in 9! distinct ways.
Consequently

ANSWER: 9! · 9!/4! · 3! · 2!.

Part II

6. (3p) Let p be a prime number. Show that if p > 3 then 24 divides p2 − 1.

Solution. We note that
p2 − 1 = (p− 1)(p+ 1).

Of three consecutive integers exactly one is divisible by three. As 3 does not divide
p, the integer 3 must divide either of p − 1 or p + 1. Hence, 3 divides p2 − 1. The
prime number p is odd, hence both p−1 and p+1 are even, of which one is divisible
by 4. Hence, 2 · 4 divides (p− 1)(p+ 1). As both 3 and 8 divides p2− 1 we are done.

7. (4p) Let S8 denote the set of all permutations of the set {1, 2, . . . , 8}. Write the
permutation ϕ = (1 3 5)(2 4 6 7) as a product of nine distinct permutations in
S8 of which no two are inverses to each other, that is,

ϕ = ψ1ψ2 · · ·ψ9, and ψiψj 6= Id.

for i 6= j, or show that this is impossible, (if this happens to be the case).

Solution. There are indeed very many distinct possibilities. Here is one:

ϕ = (1 5)(1 3)(2 7)(2 6)(2 4)(1)ψψ2ψ3

where
ψ = (1 2 3 4 5 6).
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8. (4p) In how many ways can the set {1, 2, . . . , 8} be divided into three mutually
disjoint subsets each containing at least two elements.

Solution. There are two cases to treat, either there are two sets each with two
elements and one set with four elements, or one set with two elements and two
subsets with three elements each.

In treating the first case we start by choosing four elements to the 4-set. This can
be done in

(
8
4

)
distinct ways. Remains four elements {a1, a2, a3, a4} to divide into

two sets of size two. The element a1 must then have exactly one set mate among
the remaining three. There are three possibilities for this. So in total this case the
total number of possibilities is

3 ·
(

8

4

)
= 3

8 · 7 · 6 · 5
1 · 2 · 3 · 4

= 210.

Similarly, in the second case, we get that the number of possible values is(
8

2

)(
5

2

)
=

8 · 7
1 · 2

5 · 4
1 · 2

= 28 · 10 = 280.

ANSWER: 490.

Part III

9. A set C of binary words of length n is a covering 1-code in Zn
2 if every binary word

of length n is within distance at most one from at least one word of C.

(a) (1p) Show that the words in the set

C = {0000, 1100, 1010, 1001, 0110, 0101, 0011, 1111}

is a covering 1-code in Z4
2 .

Solution The code C consists of all words of even weight. If you add a word
of weight one to any word of odd weight, you will get a word of even weight.
Hence all words of odd weight are at distance one from at least one code word.
The even weight words are already code words.

(b) (1p) Are there any covering 1-codes in Z4
2 with fewer words? An answer must

contain a motivation.

Solution. Let C be the null space, when counting modulo 2, of the matrix

H =

[
0 1 1 1
1 0 1 1

]

As being a null space of a matrix we get that C is a subspace of Z4
2 of dimension

2 and thus contains exactly 22 = 4 elements. Assume x̄ = (x1 . . . x4) not in
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C. Then, Hx̄T will be equal to one of the columns in H. Hence, x̄, can be
“corrected” to at least one word of C, by using the general error-correcting
procedure using parity-check matrices.

Thus

ANSWER: Yes.

(c) (3p) A code C is linear if the difference between any two words of C also belongs
to C. Find a construction of linear covering 1-codes, and discuss whether your
construction is “the best possible”.

Solution. Every subspace of a vector space is a null space of a matrix. Thus
the requested linear code is the null space in the vector space Zn

2 of a matrix
H with n columns and k linearly independent rows.

Let ēi denote the word of weight one with its only non-zero entry in position
i. If C is a covering code, then for every x̄ in Zn

2 \ C it must be true that

H(x̄T + ēTi ) = 0̄T ,

or equivalently
Hx̄T = HēTi ,

for at least one coordinate position i.

We know that HēTi is equal to column number i of H. As this matrix has full
rank, to every column of height k there is a vector x̄ such that Hx̄T is equal
to that column. Hence, if C is a covering code if and only if every possible
non-zero column of height appears at least once in H.

The construction is thus as follows. For given length n, choose the largest k
such that 2k − 1 ≤ n. Form a matrix H with n columns and k rows and with
all non-zero columns appearing in the this matrix. The null space of H will be
the best possible linear covering code of length n.

10. (5p) (From Wilson: Introduction to Graph Theory.) Let G be a bipartite graph
with vertex sets X and Y , so that there are no edges between vertices in X, and no
edges between vertices of Y . Suppose that every vertex in X has a valency at least
equal to the integer t and suppose that the Hall condition is satisfied. Show that
the number of complete matchings in G is at least equal to t! if |X| ≥ t, and is at
least equal to t!/(t− |X|)! if |X| < t.

Solution. If the Hall condition |A| ≤ |J(A)|, for every subset A of X, then this
condition is satisfied whenever deleting one vertex form X. So we can proceed by
induction on the number of vertices of X.

Let t be fixed.

We first consider the case |X| < t. Denote the vertices in X by v1, . . . , vn. Match
vn with any of t adjacent vertices. By induction hypothesis, the remaining bipartit
graph admits at least (t−1)!/(t−1−(|X|−1))! distinct complete matchings. Hence
by principle of multiplication we get t!/(t− |X|)! distinct complete matchings. The
initial step |X| = 1 is a complete triviality.
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In the case t = |X| we achieve at least t! distinct complete matchings with exactly
the same arguments as above.

The case t < |X| can now be treated by induction over the size of X.


