Problem session November 6, SF2736, fall 12.

Please prepare!

1. Is the following information sufficient to find the relation \mathcal{R} :
2. The relation \mathcal{R} is an equivalence relation on $\mathcal{M}=\{1,2,3,4,5,6\}$.
3. $\{(1,2),(2,3),(2,4),(5,6)\} \subseteq \mathcal{R}$.
4. $(2,6) \notin \mathcal{R}$.
5. Let \mathcal{M} denote the set $\{1,4,5,8,11,12,13,17\}$. For any two elements $a, b \in \mathcal{M}$ define $a \mathcal{R} b$ if 4 divides $b-a$. Show that \mathcal{R} is an equivalence relation on \mathcal{M} and describe the equivalence classes.
6. Which is the mistake in the following proof for that a relation \mathcal{R} which is symmetric and transitive must be reflexive: If $a \mathcal{R} b$ then by symmetry $b \mathcal{R} a$ and hence by transitivity $a \mathcal{R} b$ and $b \mathcal{R} a$ will imply that $a \mathcal{R} a$
7. Assume that $f: A \rightarrow B$ and $g: B \rightarrow A$ are such that

$$
(g \circ f)(x)=x \quad \text { for all } \quad x \in A
$$

Will this imply that f and g, respectively, are either injective, surjective or bijective?
5. (a) Let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$. Is it always true that for every $x \in A$

$$
((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) .
$$

(b) Find two functions $f: A \rightarrow A$ and $g: A \rightarrow A$ such that

$$
f \circ g \neq g \circ f .
$$

(c) Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijective functions then the function $g \circ f: A \rightarrow C$ will be a bijective function.
6. (a) Show that a union of any finite family of countable infinite sets is a countable infinite set.
(b) Can the union of a countable infinite family of countable sets be countable infinite.
7. Let S be a set of five positive integers the maximum of which is at most 9 show that the sums of the elements in all the nonempty subsets of S cannot all be distinct.
8. Show that to any sequence $a_{1}, a_{2}, \ldots, a_{p+1}$ of $p+1$ positive integers there will always exist a subsequence

$$
a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{t}}
$$

such that

$$
a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{t}} \equiv 0 \quad(\bmod p) .
$$

9. Are there any non-prime numbers n, with $n>1$, such that

$$
m^{n-1} \equiv 1(\bmod n)
$$

for every integer m such that n does not divide m.

