Problem session December 6, SF2736, fall 12.

Please prepare!

1. Show that there is no graph with the following sequence of degrees $2,3,3,3,3,4$, 5 of its vertices.
2. Are the following two graphs isomorphic?

a	b	c	d	e	f							
b	a	a	a	b	c							
c	c	b	e	d	d							
d	e	f	f	f	e	\quad respectively \quad	1	2	3	4	5	6
:---	:---	:---	:---	:---	:---							
2	1	2	3	2	1							
4	3	4	5	4	3							
6	5	6	1	6	5							

3. An acyclic graph has 124 vertices and 98 edges. Find the number of components.
4. Show that a graph with n vertices, such that the sum of the degrees of any to vertices is at least equal to $n-1$, must be connected.
5. Find the maximum number of vertices of in a graph with 28 edges if the degree (valency) of every vertex is at least 3 .
6. Find orderings of the vertices of the cube for which the greedy algorithm requires 2,3 and 4 colors respectively, for a coloring where adjacent vertices have distinct colors.
7. Find a complete matching in the bipartite graph on the set of vertices $X=\left\{a_{1}, a_{2}\right.$, $\left.\ldots, a_{5}\right\}$ and $Y=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{5}\right\}$ and edges $\left\{\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right)\right.$, $\left.\left(a_{2}, b_{4}\right),\left(a_{3}, b_{3}\right),\left(a_{3}, b_{5}\right),\left(a_{4}, b_{1}\right),\left(a_{4}, b_{2}\right),\left(a_{4}, b_{4}\right),\left(a_{5}, b_{3}\right)\right\}$.
8. A network and a flow is defined as above

(x, y)	(s, a)	(s, b)	(s, c)	(a, b)	(a, d)	(b, c)	(b, d)	(b, e)	(c, e)	(d, t)	(e, t)
$c(x, y)$	5	6	8	4	10	2	3	11	6	9	4
$f(x, y)$	5	6	0	0	5	1	2	3	1	7	4

(a) What is the value of f ?
(b) Find an f-augmenting path and compute the value of the augmented flow.
(c) Find a cut with capacity 12.
9. Suppose that every boy in a school has a list of k girls he can date and suppose that every girl appears on k such lists. Show that every boy can find a girl to date.
10. Show that for every bipartite graph with n vertices it is true that $e \leq\left(\frac{n}{2}\right)^{2}$.
11. Find the number of regular 4 -valent graphs with seven vertices.
12. Show that if a graph G is not connected then the complement \bar{G} of the graph must be connected.
13. Show that if \bar{G} is the complement of the graph G then $\chi(G) \chi(\bar{G}) \geq n$ where n is the number of vertices of G.

