Problem session October 30, SF2736, fall 12.

Please prepare!!

- 0. Find the inverse of the element 76 in the ring Z_{221} .
- 1. Solve
 - (a) 13x + 18 = 13 in the ring Z_{64} .
 - (b)

 $\begin{cases} 7x + 2y = 5\\ 10x + 7y = 3 \end{cases}$

in the ring Z_{13} .

2. Find all elements b of Z_{17} such that the equation

$$x^2 + 3x + b = 0$$

has a solution.

3. Find

$$545^{112} \pmod{23}$$
 and $545^{112} \pmod{24}$.

- 4. Find non-negative integers n > 2 and m such that n is not a prime number but n divides $m^{n-1} 1$.
- 5. Show that if p is a prime number then

$$(p-1)! \equiv -1 \pmod{p}$$

- 6. For any two integers a and b show that the two integers $a/\gcd(a, b)$ and $b/\gcd(a, b)$ are relatively prime.
- 7. Find all integers n and m such that 314n + 218m = 12 with $0 \le n \le 20$.
- 8. Find the number of solutions to the equation $x^2 = 1$ in the ring Z_{990} .
- 9. Solve the equation (x-5)(x+3) = 0 in the ring Z_{56} .
- 10. (a) Assume that m, n and k are integers with $n \ge 2$ and $m \ge 2$, and assume that $n^2 = km^2$. Prove that k is a square of some integer.
 - (b) Assume that gcd(x, y) = 1. Prove that if $xy = z^2$ for some integer z, then $x = n^2$ and $y = m^2$ for some integers n and m.
- 11. Show that if $2^n 1$ is a prime number then n must be a prime number. Will the same statement be true if we substitute 2 by any integer $a \ge 2$.
- 12. (a) Find the number of solutions to an equation

$$a_1x_1+a_2x_2+\ldots+a_nx_n=b,$$

in a ring Z_p , where p is a prime number.

(b) Give a more general result from which your answer to the previous problem follows.