Problem session November 27, SF2736, fall 12.

Please prepare!

1. In how many ways can the faces of a tetrahedron be colored in q distinct colors.
2. The matrix

$$
\mathbf{H}=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

is the parity-check matrix of an 1-error-correcting code C.
(a) Find all elements of C.
(b) Correct the word 011111.
(c) How many words cannot be corrected.
3. Find a linear 1-error-correcting code C of length 9 , size $|C|=32$ and containing the words 111100000 and 110000110 .
4. For which integers n are there an 1-error-correcting binary code C that can correct all words of length n.
5. Find the maximum size of a 2 -error-correcting code of length 8 .
6. Show that

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\ldots+n\binom{n}{n}=2^{n-1} n .
$$

7. Solve the recursion

$$
u_{n+2}+8 u_{n+1}-9 u_{n}=8 \cdot 3^{n+1}, \quad n=2,3, \ldots
$$

and where $u_{0}=2$ and $u_{1}=-6$.
8. Find the number of partitions of 16 in which each part is an odd prime.
9. Prove that the number of partitions of n in which each part is 1 or 2 is equal to the number of partitions of $n+3$ which have exactly two distinct parts.

