Matematiska Institutionen

KTH

Homework number 2 to SF2736, fall 2012.

Please, deliver this homework at latest on Wednesday, November 14.

1. (0.1p) Let \mathcal{R} be an equivalence relation on a set A. Assume that $|A|=$ 45 and assume that \mathcal{R} induces a partition of A into five equivalence classes of equal size. Find $|\mathcal{R}|$.
2. (0.2 p) Let \mathcal{R} be a relation on a set A which is both transitive and symmetric. Define

$$
C_{a}=\{x \in A \mid a \mathcal{R} x\} .
$$

Is the following true

$$
C_{a} \neq C_{b} \quad \Longrightarrow \quad C_{a} \cap C_{b}=\emptyset .
$$

3. Let $A=\{1,2, \ldots, 9\}$ and let \mathcal{R} be the following relation on A :

$$
\mathcal{R}=\{(1,1),(2,3),(3,5),(7,6),(7,7),(8,9)\} .
$$

(a) (0.1p) Find the smallest equivalence relation that contains \mathcal{R}.
(b) (0.2 p) Find the number of equivalence relations that contain \mathcal{R}.
4. (0.1p) Find and describe a bijective map that maps the set of real numbers in the open interval $(3,7)$ onto the interval $(2,3)$.
5. (0.3p) Assume that A is a given countable infinite set and let B be the set of all real numbers x that are solutions to some polynomial equation

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

where $a_{i} \in A$, for $i=0,1, \ldots, n$. Is the set B countable infinite?

