Matematiska Institutionen KTH

A typical exam to the course Discrete Mathematics, SF2736, fall 12.

Observe:

- 1. Nothing else than pencils, rubbers, rulers and papers may be used.
- 2. Bonus points from the homeworks will be added to the sum of points on part I.
- 3. Grade limits: 13-14 points will give Fx; 15-17 points will give E; 18-21 points will give D; 22-27 points will give C; 28-31 points will give B; 32-36 points will give A.

Part I

1. (3p) The 1-error-correcting code C has the (parity) check-matrix

- (a) Find the number of words of C.
- (b) Find two words of C.
- (c) Find the number of words that the code cannot correct.
- 2. (a) (1p) Find all solutions to the equation 14x + 7 = 26 in the ring Z₃₇.
 (b) (2p) Find 2²⁰⁰ (mod 37).
- 3. (3p) Let G be a finite graph with at least three edges and assume that the valency (degree) of every vertex is an even non-zero integer. Explain why there must exist at least one cycle in G.
- 4. Answer, together with an explanation, the following questions:
 - (a) (1p) Can you find any odd permutation the order of which is even?
 - (b) (1p) Can you find any even permutation the order of which is odd?
 - (c) (1p) Can you find any odd permutation the order of which is odd?
 - (d) (1p) Can you find any even permutation the order of which is even?
- 5. Find the number of solutions to the Diophantine equation

 $x_1 + x_2 + x_3 + x_4 \le 15,$

where it is required that $0 \le x_1 \le 4, -2 \le x_2 \le 3, 2 \le x_3 \le 8$ and $x_4 \ge 0$.

Part II

- 6. (a) (1p) Prove that gcd(a, b) divides lcm(a, b) for all integers a and b.
 - (b) (2p) Find the number of sets $\{x, y\}$ such that x and y are non negative integers and

gcd(x, y) = 60 and lcm(x, y) = 12600.

- 7. (4p) Let S_4 denote the symmetrical group on four elements, that is, the group that consists of all permutations of the elements in the set $\{1, 2, 3, 4\}$. Find the smallest subgroup H of S_4 that contains the permutations (1 2) and (2 3 4).
- 8. (4p) Find the number of surjective maps f from the set $\{1, 2, 3, ..., 10\}$ to $\{1, 2, 3, ..., 6\}$ such that the elements f(1), f(2) and f(3) are distinct.

Part III

- 9. Let G be a k-regular bipartite graph G with the set of vertices X and Y, (so there are no edges between vertices in X and no edges between vertices in Y).
 - (a) (1p) Show that the number of vertices in X is equal to the number of vertices in Y.
 - (b) (1p) Show that if k = 2 then there will exist an edge-coloring of G in two colors.
 - (c) (3p) Show that to every non-negative integer p less than k there is a coloring of the edges in G in the colors black and white such that at each vertex there will be p white edges and k p black edges.
- 10. (5p) Let $\varphi(n)$ denote the number of integers $1 \le m \le n$ that are relatively prime to n. Show that for all positive integers n, and all prime numbers p, it is true that n divides $\varphi(p^n 1)$.