Problem session November 5, SF2736, fall 10.

- 1. Is the following information sufficient to find the relation \mathcal{R} :
 - 1. The relation \mathcal{R} is an equivalence relation on $\mathcal{M} = \{1, 2, 3, 4, 5, 6\}$.
 - 2. $\{(1,2), (2,3), (2,4), (5,6)\} \subseteq \mathcal{R}.$
 - 3. $(2,6) \notin \mathcal{R}$.
- 2. Let \mathcal{M} denote the set $\{1, 4, 5, 8, 11, 12, 13, 17\}$. For any two elements $a, b \in \mathcal{M}$ define $a\mathcal{R}b$ if 4 divides b a. Show that \mathcal{R} is an equivalence relation on \mathcal{M} and describe the equivalence classes.
- 3. What is wrong with the following proof for that a relation \mathcal{R} which is symmetric and transitive must be reflexive: If $a\mathcal{R}b$ then by symmetry $b\mathcal{R}a$ and hence by transitivity $a\mathcal{R}b$ and $b\mathcal{R}a$ will imply that $a\mathcal{R}a$
- 4. Assume that $f: A \to B$ and $g: B \to A$ are such that

$$(g \circ f)(x) = x$$
 for all $x \in A$.

Will this imply that f and g, respectively, are either injective, surjective or bijective?

5. (a) Let $f : A \to B$, $g : B \to C$ and $h : C \to D$. Is it always true that for every $x \in A$

$$((h \circ g) \circ f)(x) = (h \circ (g \circ f))(x) .$$

(b) Find two functions $f: A \to A$ and $g: A \to A$ such that

$$f \circ g \neq g \circ f$$
.

- (c) Show that if $f : A \to B$ and $g : B \to C$ are bijective functions then the function $g \circ f : A \to C$ will be a bijective function.
- 6. (a) Show that a union of any finite family of countable infinite sets is a countable infinite set.
 - (b) Can the union of a countable infinite family of countable sets be countable infinite.
- 7. Let S be a set of five positive integers the maximum of which is at most 9 show that the sums of the elements in all the nonempty subsets of S cannot all be distinct.
- 8. Show that to any sequence $a_1, a_2, ..., a_{p+1}$ of p+1 positive integers there will always exist a subsequence

$$a_{i_1}, a_{i_2}, \ldots, a_{i_t}$$

such that

$$a_{i_1} + a_{i_2} + \ldots + a_{i_t} \equiv 0 \pmod{p} .$$